关 闭

新闻中心

EEPW首页 > 工控自动化 > 设计应用 > 基于DSP高精度伺服位置环设计

基于DSP高精度伺服位置环设计

—— Design of High Accuracy Servo Position Loop Based on DSP
作者:暨绵浩 广州数控设备有限公司时间:2010-07-02来源:电子产品世界收藏

  引言

本文引用地址://m.amcfsurvey.com/article/110546.htm

  机床是装备制造业的母机,也是装备制造业的引擎。我国“十一五”发展规划明确规定:国产国内市场占有率要达到60%,高端产品与国际先进水平的差距缩小到5年以内。

  作为的重要功能部件,伺服驱动装置是向高速度、高精度、高效率迈进的关键基础技术之一。随着新的微处理器、电力电子技术和传感器技术在伺服驱动装置的应用,伺服驱动器的性能获得极大的提高。如日本的安川公司利用新的微处理器,以及通过扩充新的控制算法,速度频率响应提高到了1.6kHz,具有自动测定机械特性,设置所需要的伺服增益功能,实现了“在线自动调整功能”;发那科公司的新一代驱动器则采用了1600万/转的高分辨率的编码器,高精度电流检测,实现了高速、高精度的伺服HRV (高响应向量)控制算法,伺服电机的最大控制电流减少50%,并减少电机发热17%,使得伺服驱动装置可以获得更高的刚性和过载能力。国内在高性能伺服驱动技术方面,与国外名牌企业仍存在较大的差距,已成为制约我国发展中高档数控系统产业的“瓶颈”问题。

  针对旧产品的信号处理时间长,电流与位置信号检测精度低的不足,本系统以TMS320F2812 为控制器,缩短了信号处理时间且提高电流采样精度;位置检测用多摩川的TS5667N120 17位绝对式编码器以提高了位置检测精度。系统在数控加工中心的应用中,具有定位无超调、高刚性、高速度稳定性,达到了设计指标,可以满足微米级加工精度的要求。

  系统硬件设计

  系统硬件以 TMS320F2812控制器、三菱公司的IPM功率模块、多摩川公司的TS5667N120 17位绝对式编码器为主要功能部件,硬件系统框图如图1所示。

  图1中TMS320F2812 为控制核心,接收来自CNC、编码器接口、电流检测模块和故障信号处理模块的信息,完成对控制和故障处理。光电隔离模块作为电子电路与功率主电路的接口,将DSP发出的SVPWM信号送入IPM模块,完成DC/AC逆变,驱动电动机旋转。编码器接口将绝对式编码器所记录的永磁同步电动机的磁极位置、电动机转向和编码器报警等信息送往DSP,同时将永磁同步电动机的位置信息送往CNC。电机相电流经电流检测模块量测、滤波、幅度变换、零位偏移、限幅,转化为0~3V的电压信号送入DSP的A/D引脚。功率主电路的过压、欠压、短路、电源掉电和IPM故障等信号经故障检测模块检测与处理后,送入DSP的I/O端口。键盘与显示模块是控制器的人机接口,用以完成控制参数的输入,运行状态与运行参数显示。存储器模块用以存储控制参数与系统故障信息。

  系统软件设计

  按任务划分,系统软件由任务与任务管理模块构成,任务管理模块对人机接口、控制算法、加减速控制、故障处理等四个任务进行调度管理。控制算法主要包括:调节器控制算法、矢量控制算法和数字滤波器算法等。

  按照结构化程序设计方法,遵循“功能独立”的原则,将系统软件划分为主程序模块和矢量控制程序模块两大部分,各部分又划分为若干子模块,以利于软件设计、调试、修改和维护。矢量控制软件设计采用典型的前后台模式,以主程序作为后台任务,中断服务程序作为前台任务。根据矢量控制算法的特点,中断服务程序只处理实时性高的PWM控制子程序,把系统的一些测量、键盘处理和显示等一系列实时性不高的任务放到后台任务。

  主程序是软件的主体框架,其工作过程是:系统上电复位后,依次对片内外设进行初始化、从E2PROM中读出控制参数、LED显示初始信息。初始化完成后,主程序循环执行LED显示、键盘处理和参数计算与保存。

  PWM中断服务。在PWM中断到来时,首先读取编码信号,进行角度和速度计算,接着进行A/D采样并执行clark和park变换,然后进行PI调节、反park变换,最后进入空间矢量模块,产生PWM信号。

伺服电机相关文章:伺服电机工作原理


分频器相关文章:分频器原理

上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭