关 闭

新闻中心

EEPW首页>工控自动化>设计应用> 基于峰值控制的IGBT串联均压技术

基于峰值控制的IGBT串联均压技术

作者: 时间:2013-08-22 来源:网络 收藏

3.2 IGBT雪崩箝位的
通常认为,一旦超过IGBT额定电压就会引起过电压击穿,导致不可逆的失效。其实IGBT发生过电压击穿时,雪崩电压击穿本身不会损坏器件,是个可恢复过程;过电压击穿失效本质在于雪崩电压击穿时产生的焦耳热累积引起结温不断上升的热击穿失效。在此通过实验验证IGBT具有可承受短时过电压击穿能力。实验原理电路如图6a所示,V1作为开关管与电感负载L串联,实验对象Vs与一个限流电阻R0串联,并在V1两端。由于L的作用,当V1关断时,V1的uCE波形中会出现高于直流侧电压的浪涌电压。当V1的UCE超过Vs的雪崩电压时,Vs发生雪崩击穿箝位现象,其余电压降到R0上。实验波形如图6b所示,型号为K50T60的Vs,其额定电压为600 V,发生雪崩击穿时,电压基本稳定在630 V,流过约为5.9 A的电流。

本文引用地址://m.amcfsurvey.com/article/159275.htm

e.JPG

f.JPG


综上考虑,改进电路如图7所示。该电路不仅提高了稳压管峰值箝位控制方法适用的功率范围,且将关断时电容上存储的能量在开通瞬间返给主电路,降低了能量损耗。该电路工作原理为:V关断,当V极射极电压uCEv低于Vs2的雪崩电压U(BR)CE2,支路的漏电流很小,其阻抗可视为无穷大,Vs2承担整个uCEv,C上电压约等于零,均压支路不起作用。当uCEv达到Vs2的U(BR)CE2,通过回路R1-C1-Vs2-R2的电流,流入门极。该电流是集电极向门极的反馈电流,相当于增大了IGBT的米勒电容,使uCEv上升斜率下降。当C1两端电压达到Vs1的雪崩电压U(BR)CE1,流过回路Vs1-Vs2-R2的电流,注入门极。当该电流足够大时,IGBT进入有源区,使uCEv箝位在U(BR)CE1+U(BR)CE2,实现

g.JPG


采用Saber软件仿真,主电路如图3所示,V1,V2采用主要描述IGBT静态特性、非线性极间电容及关断时拖尾电流等特性的IGBT模型,模型参数大部分参考MBN600E45A器件数据手册。均压电路如图7所示,Vs1,Vs2采用IGBT专有模型irg4bc40w。当串联的V1,V2关断时,部分参数波形如图8所示。其中,图8a为Vs1,Vs2的集电极电流iCVs1,iCVs2,集射极电压uCEvs1,uCEvs2;图8b为V1,V2的uGE,uCE波形,实线为有均压控制时的波形,虚线为无均压控制时的波形。在t1时刻,uCEv1超过Vs2的雪崩电压U(BR)CE2时,Vs2发生雪崩击穿箝位;随着uCEv1电压继续增加,C1充电,相当于增加了V1,V2的米勒电容,起到斜率控制的作用;t2时刻,C1两端电压超过Vs1的雪崩电压,Vs1发生雪崩击穿箝位,将uCEv1箝位到U(BR)CE1+U(BR)CE2,实现作用。

4 结论
综合考虑串联IGBT关断过程中3阶段不均压产生的特点,在800 V电压下测试了基于稳压管箝位的峰值控制方法,实现了较好的均压效果,验证了该均压原理的有效性。但该电路因稳压管器件功率、特性等因素,在高压场合使用受到限制,这里对该均压方法进行了改进,并通过仿真验证了其均压原理。为实际应用中的参数优化设计和高压实验验证提供了理论基础。


上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭