新闻中心

EEPW首页>电源与新能源>设计应用> 单相PWM整流器能量双向传输的实现技术

单相PWM整流器能量双向传输的实现技术

作者: 时间:2010-12-22 来源:网络 收藏

IGBT的驱动电路

IGBT 具有开关速度快,电压控制的特点,同时又具有电流、电压容量大,导通压降小的优点,因而具有良好的特性,是目前大中功率电子设备普遍使用的开关器件。本系统采用国际整流器公司生产的IRGB15B60KD型号的开关管,它的耐压为600V,允许通过的最大电流为15A,正常工作压降为1.8V;栅极驱动电压为15V,开通时间延迟为34ns,关断时间延迟为184ns。驱动电路如图3(a)所示。
30241_4136_11.JPG
图3(a) IGBT驱动电路

驱动芯片IR2103S的内部结构如图3(b)所示。IR2103S是半桥驱动芯片,具有低压自锁功能,当栅极驱动电压小于11V时,断开栅极信号,当栅极电压低于10V时,IGBT将工作于线性区并且很快过热,所以要有低栅压保护电路。IR2103S内部自带低压自锁电路。IGBT栅极需要15V才能达到额定的C-E结导通压降。如果栅极电压低于13V时,在大电流时导通压降将急剧上升。所以IR2103S的电源电压定为15V比较合适。
30241_4136_12.JPG
图3(b) IR2103S内部结构

为了改善控制脉冲的前后延陡度并防止振荡,减少IGBT集电极大的电压尖脉冲,需要栅极串联电阻RG。当RG增大时,开通和关断延迟时间都将延长,IGBT的能耗增加。当RG减小时,di/dt增大可能引起IGBT误导通或损坏。所以,应选择合适的RG,通常为几十W到几百W。根据IRGB15B60KD产品数据实验检测值为22W,综合考虑可取RG=30W。当集-射极之间加有高压时,易受外界干扰,使栅-射电压超过UGEth引起误动作。为了防止这种现象发生,在栅-射间须接一个栅-射电阻RGE。如果RGE太小,开通时间会增大,从而降低开关频率。通常RGE=(1000~5000)RG,则可取RGE=90KW。

C3为VCC电源滤波电容,取C3=0.1mF,C4与D1为自举电容和二极管,自举电容工程应用常取

C4=2Qg/(VCC-10-1.5)

假设IGBT充分导通电压为10V,电容及二极管上的压降为1.5V。对于50A/600V的IGBT充分导通时所需要的栅电荷Qg=250nC。

则C4可取:C4=2×250×10-9/(15-10-1.5)=0.14mF

可取C4=0.22mF,或更大容量的且耐压大于35V的钽电容。

为了快速关断IGBT,要给栅极加负偏电压,但过大的负偏电压会造成IGBT反向击穿,通常取关栅电压为-5V。为了防止IGBT被击穿,在栅-射之间加两个反向串连的稳压值分别为5V和15V的稳压管。

为了避免主回路中的强电干扰控制回路中的弱电信号,采用光耦隔离器将驱动回路的控制部分和主回路隔离。通过隔离,人工在线调试的时候更加安全,另外驱动电路的输入/输出使用不同的地,利用隔离,可以避免之间的干扰。本系统采用TLP621光藕隔离器,+5V供电,隔离电压为5000AC(V),典型工作输入电流为16mA,输出电流为1mA。输入端电阻Rin=VCC/Iin=5V/16mA =312.5W,可取Rin=330W;输出端电阻Rout=(VCC-UCE)/Iout=(5-0.7)V/1mA=4.3KW

可取Rout=4.7KW,驱动光耦隔离电路如图3(c)所示。由于IR2103S的高端输入/输出同步,低端输入/输出异步,则高端输入端接的光耦采用同向接法,低端输入端接的光耦采用反向接法,以保证同一桥的上下管不同时导通。
30241_4136_13.JPG
图3(c) 驱动光耦隔离电路

系统

软件应用广泛,7.0新增加“SimPower Systems”工具箱,这给使用者带来了极大的方便,可以根据实际电路进行建模和。本文采用基于7.0/SimPower Systems工具箱的方法对系统建模和,仿真算法采用0de15s以获得最好的仿真速度。仿真结果验证了系统的可行性。

pwm相关文章:pwm原理




关键词:Matlab计算机仿真

评论


相关推荐

技术专区

关闭