新闻中心

EEPW首页>测试测量>设计应用> 仪表放大器电路原理、构成及电路设计

仪表放大器电路原理、构成及电路设计

作者: 时间:2012-12-13 来源:网络 收藏

(1)注意关键元器件的选取,比如对图2所示电路,要注意使运放A1,A2的特性尽可能一致;选用电阻时,应该使用低温度系数的电阻,以获得尽可能低的漂移;对R3,R4,R5和R6的选择应尽可能匹配。

(2)要注意在电路中增加各种抗干扰措施,比如在电源的引入端增加电源退耦电容,在信号输入端增加RC低通滤波或在运放A1,A2的反馈回路增加高频消噪电容,在PCB设计中精心布局合理布线,正确处理地线等,以提高电路的抗干扰能力,最大限度地发挥电路的性能。

四、的特点:

● 高共模抑制比

共模抑制比(CMRR) 则是差模增益( A d) 与共模增益( Ac) 之比,即:CMRR = 20lg | Ad/ Ac | dB ;具有很高的共模抑制比,CMRR 典型值为 70~100 dB 以上。

● 高输入阻抗

要求必须具有极高的输入阻抗,仪表放大器的同相和反相输入端的阻抗都很高而且相互十分平衡,其典型值为 109~1012Ω。

● 低噪声

由于仪表放大器必须能够处理非常低的输入电压,因此仪表放大器不能把自身的噪声加到信号上,在 1 kHz 条件下,折合到输入端的输入噪声要求小于 10 nV/ Hz.

● 低线性误差

输入失调和比例系数误差能通过外部的调整来修正,但是线性误差是器件固有缺陷,它不能由外部调整来消除。一个高质量的仪表放大器典型的线性误差为 0. 01 % ,有的甚至低于 0. 0001 %.

● 低失调电压和失调电压漂移

仪表放大器的失调漂移也由输入和输出两部分组成,输入和输出失调电压典型值分别为 100μV 和2 mV.

● 低输入偏置电流和失调电流误差

双极型输入运算放大器的基极电流,FET 型输入运算放大器的栅极电流,这个偏置电流流过不平衡的信号源电阻将产生一个失调误差。双极型输入仪表放大器的偏置电流典型值为 1 nA~50 pA ;而 FET 输入的仪表放大器在常温下的偏置电流典型值为 50 pA.

● 充裕的带宽

仪表放大器为特定的应用提供了足够的带宽,典型的单位增益小信号带宽在 500 kHz~4 MHz 之间。

● 具有“检测”端和“参考”端

仪表放大器的独特之处还在于带有“检测”端和“参考”端,允许远距离检测输出电压而内部电阻压降和地线压降( IR) 的影响可减至最小。

电路相关文章:电路分析基础


网线测试仪相关文章:网线测试仪原理

上一页 1 2 下一页

评论


相关推荐

技术专区

关闭