新闻中心

EEPW首页>测试测量>设计应用> 同步轨道共位卫星位置确定技术

同步轨道共位卫星位置确定技术

作者: 时间:2012-08-28 来源:网络 收藏

2.2 共位相对位置测量精度分析
甚长基线干涉测量(VLBI)系统是目前测量精度最高的测量系统,采用甚长基线干涉测量系统,同波束干涉测量精度经过分析可达36 prad,满足同步共位相对位置精度需求。但VLBI测量需要远程传输,不能实时处理,并且安排观测比较困难。这里采用CEI系统分析同步共位相对位置的测量精度。
文献对深空探测SBI测量差分相对距离误差进行了详尽的分析。误差源包括太阳等离子体、电离层、对流层等引起的传输时延误差,系统噪声、相位漂移、航天器晶振漂移、未校准群时延或时钟偏差引起的地面站测量误差,基线误差引起的测量误差。同步卫星是近地卫星,金星、火星等太阳行星旁航天器目标不同,它受太阳等离子体影响很小,可以或略不计。
同步轨道卫星是高轨卫星,离地面约36 000 km,CEI测量的各个测量站对卫星观测的仰角都很高,这里分析取测量站仰角为45°。并不是所有同步轨道卫星都采用双频传输,这里分析取C频段单频进行分析,天线口径10 m,积分时间1 s。单频电离层影响较大,可以通过CPS长期观测同步轨道共位卫星方向的电离层影响。通过GPS观测,C频段天顶方向电离层影响可以降低到30 mm以下。对流层和频率没有关系,可以采用GPS掩星观测,对流层天顶方向影响可以降低到40 mm以下。如果采用微波辐射计校准,精度更高。根据上述条件,采用文献的分析方法,同步轨道共位卫星SBI测量差分相对距离误差表1所示。

本文引用地址://m.amcfsurvey.com/article/193323.htm

e.JPG


两目标相对位置可以通过式(9)分别计算出两个目标的位置,对其作差,获得其相对位置。对相对位置中距离、方向余弦角等变量求偏导。假设各个方向余弦误差相同,通过化简计算得到相对位置误差为
f.JPG
其中,xAB,yAB,zAB是A、B两个航天器x,y,z位置坐标差。假设单站测距精度系统误差为2 m,随机误差δR为1 m。由于系统差可以在定轨过程中扣除,这里计算精度按照随机测距误差计算。δRAB=δRA-δRB,δRA和δRB为测站测量航天器A和航天器的距离随机差。RA为测站到航天器A的距离,△R为测站到航天器A距离和航天器B距离的差,δαAB为SBI方向余弦角误差,δα为系统测量单个目标的方向余弦角误差。
根据前面分析,基线100 km,方向余弦角45°,δα取300 nrad,δαAB为3.6 nrad。取RA为50 000 km,△R300 m,取值300m。通过CEI系统进行SBI测量,相对位置误差约为1.5 m。对于10 km的基线,误差最大放大10倍,相对位置也可达15 m。

3 结束语
同步轨道卫星用途广泛,“多星共位”可以解决同步轨道卫星日益增长的需要。通过分析可以看出,采用CEI系统进行同步轨道共位卫星位置确定,100 km的基线,采用GPS校正绝对位置定位精度50 m。采用SBI技术测量它们间的相对位置,相对位置定位精度可以达到m级。要达到同样的测量精度,传统的测距、多普勒跟踪测量需要几个小时甚至几天的时间。而采用测距和连接端站干涉测量相结合,航天器三维位置可以在直接测定,能够满足同步轨道共位卫星高精度测量的要求。


上一页 1 2 3 4 下一页

关键词:轨道卫星

评论


相关推荐

技术专区

关闭