新闻中心

EEPW首页>模拟技术>设计应用> 基于GaN FET的CCM图腾柱无桥PFC

基于GaN FET的CCM图腾柱无桥PFC

作者: 时间:2016-05-18 来源:网络 收藏

  D.安全FET

本文引用地址://m.amcfsurvey.com/article/201605/291322.htm

  为了克服共源共栅结构的缺点,我们在这里介绍一个全新的安全FET结构(如图6中所示)。

  图6—安全FET结构。

  这个安全GaN FET集成了一个常开型GaN器件、一个LV MOSFET、一个启动电路和一个用于GaN器件的栅极驱动器。MOSFET的功能与其在GaN共源共栅FET结构中的功能一样。它确保常开型GaN器件在Vcc偏置电压被施加前关闭。在Vcc被施加,并且栅极驱动器建立一个稳定的负偏置电压后,启动逻辑电路将MOSFET打开,并在随后保持接通状态。由于GaN器件不具有少数载子,也就不存在反向恢复,与相对应的MOSFET相比,GaN的栅极电容要少10倍,输出电容要低数倍。安全GaN FET完全涵盖了GaN所具有的优势。出色的开关特性确保了全新的开关转换器性能等级。还应指出的一点是,由于安全GaN FET内没有实际存在的体二极管,当一个负电流流经GaN FET,并且在漏极和源极上产生出一个负电压时,这个GaN器件的运行方式与二极管一样。GaN FET在Vds达到特定的阀值时开始反向传导,而这个阀值就是“体二极管”正向压降。正向压降可以很高,达到数伏特。有必要接通GaN FET来减少二极管模式下运行时的传导损耗。

  III.图腾柱CCM控制

  图腾柱是一款不错的测试工具,可以在硬开关模式中对安全GaN FET进行评估。图7中所示的是一个常见的图腾柱电源电路。Q3和Q4是安全GaN FET;Q1和Q2是AC整流器FET,它在AC线路频率上开关;而D1和D2是浪涌路径二极管。当AC电压被输入,并且Vac1-Vac2处于正周期内,Q2被接通时,Q4运行为一个有源开关,而Q3运行为一个升压二极管。为了减少二极管的传导损耗,Q4在同步整流模式中运行。而对于负AC输入周期,此电路的运行方式一样,但是具有交流开关功能。

  图7—有源开关周期(上图)和续流周期(下图)中,正AC输入下,图腾柱PFC的工作方式。

  正如在第II部分中描述的那样,这个“体二极管”具有一个很明显的正压降。这个GaN FET应该在续流期间被接通。为了实现CCM运行,在插入特定的死区时间的同时,有源FET和续流FET分别在占空比D和1-D内开关。如图8中所示,在重负载下,电感器电流可以全为正,不过在轻负载情况下,这个电流可以变为负。

  图8—重负载(上图)和轻负载(下图)情况下的PFC电感器电流。

  特定的负电流对于软开关有所帮助,但是,过高的负电流会导致较大的循环功率和低效率。为了实现最优效率,GaN FET的接通和关闭死区时间需要根据负载和线路情况进行实时控制。由于GaN FET输出电容,Coss,不会随Vds电压的波动而大幅变化,从有源FET关闭到续流FET接通的死区时间Td-on可以计算为,

  在这里,Vo是PFC输出电压,而IL-peak是峰值电感器电流。

  在CCM模式下,被定义为续流FET关闭到有源FET接通的死区时间Td-off应该尽可能保持在较小的水平。如图9中所示,当接收到零电流检测 (ZCD) 信号后,相应的PWM随之被斩波,以避免出现一个负电流和循环功率。这样的话,GaN FET运行为一个理想二极管,这通常被称为理想二极管仿真 (IDE)。

  图9—理想二极管仿真控制。

  为了用理想二极管仿真实现CCM控制,我们选择的是UCD3138,一款融合数字控制器。这个控制器块的功能如图10中所示。PFC的电压环路和电流环路分别由固件和硬件CLA执行。通过采用将ZCD用作触发信号的一个控制器内部逐周期 (CBC) 硬件,可以实现IDE。

  图10—用于图腾柱PFC控制的UCD3138。

  为了最大限度地减少AC输入整流器二极管的传导损耗,如图7中的Q1和Q2所显示的那样,常常用低Rds_on MOSFET替换低速整流器二极管。这些MOSFET和高速GaN FET,Q3和Q4,根据AC电压交叉点检测值,在正负AC输入周期之间变换工作状态。这个任务看似简单,但是,为了实现洁净且平滑的AC交叉电流,应该将很多注意事项考虑在内。交叉检测的精度对于保持正确的工作状态和运行十分重要。这个精度经常受到感测电阻器容差和感测电路滤波器相位延迟的影响。几伏特的计算错误会导致很大的电流尖峰。为了避免由整流器FET提前接通所导致的输入AC短路,必须要有足够的消隐时间让Q1和Q2关闭,并且应该将这个时间插入到检测到的交叉点上。消隐时间的典型值大约在100µs至200µs之间。由于MOSFET的输出电容,Coss,很明显,Q1和Q2上的电压应该在消隐时间内几乎保持恒定。在互补整流器FET被接通前,PFC保持在之前的运行状态中,此时,施加到升压电感器上的电压几乎为零,而有源GaN FET运行在几乎满占空比状态下。在这一点上,接通互补整流器FET,或者在有源开关和同步开关之间变换GaN FET的这两个功能,会在升压电感器中形成大电压二次浪涌,并因此导致一个较大的电流尖峰。理论上,在理想AC电压交叉点上同时改变整流器FET和GaN FET工作状态可以避免电流尖峰,并且保持电流环路的负反馈,不过,这在实际环境中很难实现。此外,任何由突然状态变化所导致的电流尖峰会干扰电流环路,并且导致一定的电流振铃级别。[9] 建议在交叉点上使用PFC软启动。顾虑在于,AC交叉检测电路通常具有相位偏移,并且有可能不够精确。过早或过晚的改变状态会导致AC线路短路,或者电流环路正反馈,这会形成电流尖峰。这篇文章内提出的一款全新可靠的控制机制就是为了确保一个平滑的状态改变。图11显示的是状态变化的时序图。

  图11—PFC状态变化时序图。

  输入AC线路电压VAC_L和中间电压VAC_N被分别感测。得出的两个感测到电压的差值被用于AC电压交叉检测,这实际上是一个差分感测机制。它消除了Y_Cap电流对感测精度的影响。VAC_L-VAC_N的符号被用来确定输入的正周期和负周期。VAC_L-VAC_N的绝对值与高压线路的AC电压交叉阀值VT_H,以及低压线路的VT_L进行比较,以确定AC电压是否处于交叉区域内。如果回答是肯定的,整流器FET和升压开关均被关闭,而控制环路的积分器被暂停。当AC电压增加,并且存在于交叉区域内时,相应的整流器FET被缓慢接通。通过插入一个适当的值栅极电阻器,可以限制接通速度。在整流器FET被接通后,一个短延迟,比如说20µs,在积分器被暂停,并且PWM输出被再次启用前被插入。

  IV.实验

  为了评估安全GaN FET的性能,并验证CCM图腾柱PFC控制机制,一个运行频率为140kHz的750W PFC电路被设计成一个测试工具。表2中列出了这个电路的主要组件参数。

  表2—750W PFC电路主要组件参数。

  图12和图13显示的是D-mode GaN FET接通和关闭波形。Vg4是栅极驱动器信号,Vds是漏源电压,而IL是升压电感器电流。

  图12—GaN FET接通波形。

  图13—GaN FET关闭波形。

  如这些图中所见,GaN FET在dv/dt的值达到79V/ns最大值时的接通时间为7ns。可以在开关结束时观察到大约10-20V的振铃。这个振铃由H桥跟踪泄露电感和H桥输出高频陶瓷电容器的谐振所导致。在关闭时,Vds缓慢上升,过冲电压大约为20V。dv/dt受到GaN FET输出电容值的限制。零GaN“体二极管”正向恢复特性最大限度地减小了电压过冲幅度。



关键词:GaNPFC

评论


相关推荐

技术专区

关闭