新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > SiC设计干货分享(一):SiC MOSFET驱动电压的分析及探讨

SiC设计干货分享(一):SiC MOSFET驱动电压的分析及探讨

作者:时间:2022-06-16来源:富昌电子收藏

随着制备技术的进步,在需求的不断拉动下,碳化硅()器件与模块的成本逐年降低。相关产品的研发与应用也得到了极大的加速。尤其在新能源汽车,可再生能源及储能等应用领域的发展,更是不容小觑。

本文引用地址://m.amcfsurvey.com/article/202206/435231.htm


(Future Electronics)一直致力于以专业的技术服务,为客户打造个性化的解决方案,并缩短产品设计周期。在第三代半导体的实际应用领域,结合自身的技术积累和项目经验,落笔于相关设计的系列文章。希望以此给到大家一定的设计参考,并期待与您进一步的交流。


作为系列文章的第一部分,本文将先就 的驱动电压做一定的分析及探讨。


常见的Vgs与Vgs(th),以及对SiC 应用的影响


驱动电压Vgs和栅极电压阈值Vgs(th)关系到SiC 在应用过程中的可靠性,功率损耗(导通电阻),以及驱动电路的兼容性等。这是SiC MOSFET非常关键的参数,在设计过程中需要重点考虑。在不同的设计中,设置不同的驱动电压会有更高的性价比。下图1 列出几个常见厂家部分SiC MOSFET的Vgs与Vgs(th)值作对比。


31.jpg


SiC MOSFET驱动电压设置探讨


1.驱动电压高电平Vgs_on是选择+12V、+15V、+18V还是+20V?


如图1所示,SiC MOSFET 驱动电压正向最大值在22V~25V左右,推荐的工作电压主要有+20V,+18V两种规格,具体应用需要参考不同SiC MOSFET型号的DATASHEET。由下图2所示,Vgs超过15V时,无论是导通内阻还是导通电流逐渐趋于平缓 (各家SiC MOSFET的DATASHEET给出的参考标准不同,有的是Rds(on)与Vgs的曲线,有的是Id与Vgs的曲线)。当然驱动电压Vgs越高,对应的Rds(on)会越小,损耗也就越小。


富昌设计小建议:Vgs设定Vgs时不能超过DATASHEET给定的最大值,否则可能会造成SiC MOSFET永久损坏。


(1)对于推荐使用+18V或+20V 高电平驱动电压的SiC MOSFET


由图1所示,因为新一代SiC MOS工艺的提升,部分SiC MOSFET推荐高电平驱动电压为+18V。由下图2所示,工艺的提升,使得Vgs从+18V到+20V的Rds(on)变化不大,导通损耗差别不明显。


富昌设计小建议:最新一代SiC MOSFET建议使用+18V驱动电压。对降低驱动损耗以及减少Vgs过冲损坏更加有益。


(2)对于+15V 高电平可否驱动SiC MOSFET


在正常情况下,DATASHEET上没有推荐,不建议使用。但是考虑到与15V驱动的Si IGBT 兼容,需要经过计算导通损耗的增加,设计有足够的散热条件以及考虑到设备整体损耗时,也可以使用。如下图2所示为Vgs与Rds(on)的关系,可知门极电压越高,Rds(on)越小,如果在+15V下工作Rds(on)会比标称值大。


富昌设计小建议:Vgs设置为+15V时,SiC MOSFET损耗会比标称值大。


(3)对于+12V 高电平可否驱动SiC MOSFET


工作原理与+15V驱动电压同理,但是应用会更少,一般不推荐使用。但是一些特殊应用场景,例如在小功率高压辅助电源应用,可能需要兼容目前市面上的Si MOSFET控制IC,又需要使用1700V的SiC MOSFET,客户在综合考量后,如果接受Rds(on)稍高的情况下,是可以使用的。


富昌设计小建议:Vgs设置为+12V时,SIC MOSFET损耗会远远超过标称值,计算损耗时应参考Vgs=+12V时的Rdson。


32.jpg


2.驱动电压低电平Vgs_off是选择0V、-3V还是-5V?


驱动电压低电平的选择要比高电平复杂的多,需要考虑到误开通。误开通是由高    速变化的dv/dt,通过米勒电容Cgd耦合到门极产生门极电压变化,导致关断时ΔVgs超过阈值电压而造成的。因此误开通不仅和阈值电压Vgs(th)有关,还与dv/dt产生的电压变化有关。


(1)对于-3V或-5V关断电压如何选择


首先参考SiC MOSFET的DATASHEET上推荐的关断电压。再考虑门极电压阈值裕度为


ΔVgs_th=Vgs(th)-Vgs_off, 当dv/dt趋于无穷大时,dv/dt产生的门极电压变化为:

ΔVgs=Vbus*Crss/Ciss。可知,当门极电压阈值裕度ΔVgs_th越大于dv/dt造成的门极电压变化ΔVgs时,器件Vgs_off安全裕度越大,误开通风险越小。但是Vgs_off越小,引起Vgs(th)漂移越大,导致导通损耗增加。


富昌设计小建议:综合考量计算ΔVgs_th 后,在实验过程中实测ΔVgs,可以进一步提升实际应用的稳定性和性能。


(2)对于0V关断电压探讨


虽然驱动电压Vgs为0V时已经可以关断SiC MOSFET,但是由于dv/dt引起的ΔVgs,可能会导致SiC MOSFET误导通,导致设备损坏,故而不推荐使用。当然如果是设计的dv/dt非常小,Crss/Ciss比值足够大,并且充分考虑到ΔVgs对SiC MOSFET误导通的影响下,客户可以根据自己的设计而定。


富昌设计小建议:重点考虑dv/dt造成的ΔVgs以及环路等效电感,对误导通的影响,在设置Vgs_off=0V时,才能让系统更加稳定。


Vgs(th)漂移带来的影响,以及影响Vgs(th)的因素


由于宽禁带半导体SiC的固有特征,以及不同于Si材料的半导体氧化层界面特性,会引起阈值电压变化以及漂移现象。为了理解这些差异,解释这些差异与材料本身特性的关系,评估其对应用、系统的影响,需要更多的研究及探索。


(1)Vth漂移对应用的影响


长期来看,对于给定的Vgs, 阈值漂移的主要影响在于会增加Rds(on)。通常来说,增加 Rds(on)会增加导通损耗,进而增加结温。在计算功率循环时,需要把这个增加的结温也考虑进去。


富昌设计小建议:如果开关损耗占比总损耗较高时,可以忽略Vgs(th) 漂移导致的开通损耗。


(2)Vth漂移对器件的基本功能不会被影响,主要有:


●    耐压能力不会受影响;

●    器件的可靠性等级,如抗宇宙射线能力,抵抗湿气的能力等不会受影响;

●    Vth漂移会对总的损耗有轻微影响;


(3)影响Vth漂移的参数主要包括:


●    开关次数,包括开关频率与操作时间;

●    驱动电压,主要是Vgs_off;


(4)以下参数对开关操作引起的Vth漂移没有影响:


●    结温;

●    漏源电压,漏极电流;

●    dv/dt, di/dt;


总结


本文主要针对驱动电压Vgs和栅极电压阈值Vgs(th)本身对SiC MOSFET在使用过程中的影响做出讨论。


在实际应用过程中,设置的Vgs电压是对设备的可靠性,功率损耗以及驱动电路的兼容性等因素的综合考虑。理论计算只是设计参考的一部分,也可以考虑实际测量获得真实的数据来修正设计参数。实际测量得到的ΔVgs,对设置Vgs_off会更有参考价值,并且会使得SiC MOSFET应用设计更加稳定且充分利用其性能。同时驱动电压Vgs的设置还会受到驱动电阻Ron与Roff、驱动电流以及驱动回路等影响,此处不做展开探讨,将在后续连载文章中逐步剖析,敬请期待。



关键词: 富昌电子 SiC MOSFET

评论


相关推荐

技术专区

关闭