新闻中心

EEPW首页>模拟技术>设计应用> ADI实验室电路:如何在IQ调制器的输出端提供固定功率增益

ADI实验室电路:如何在IQ调制器的输出端提供固定功率增益

作者: 时间:2013-10-09 来源:网络 收藏
明,当信号经过RF放大器时,IP3只会略有下降

ADI实验室电路:如何在IQ调制器的输出端提供固定功率增益

图3. 2100 MHz条件下ADL5375与复合电路(ADL5375和ADL5320驱动器放大器)的OIP3与POUT之间的关系

选择输出功率水平

虽然输出功率水平高达15 dBm时电路的OIP3水平介于35 dBm至40 dBm范围内,但实际工作时无法实现这一点,尤其在包络调制方案并非恒定不变的情况下,此类方案往往拥有相对较高的峰均比。为了理解这一点,请检查电路的输入电压与输出功率传递函数,然后考虑输入端的典型驱动电平。

图4显示了使用CW正弦波驱动信号时以输出功率(dBm)和输入电压(V p-p)表示的电路传递函数。 ADL5375等通常由双通道、电流输出、数模转换器(DAC)驱动。一般而言,DAC的两个电流输出端(标称范围是0 mA至20 mA)会通过两个50Ω电阻接地,并且每个IQ输入端上会放置两个100Ω分流电阻DAC在0 dBFS条件下运行时,这对应于IQ调制器上的驱动电平为1 V p-p或0.353 V rms(这里忽略了低通滤波器的插入损耗,该滤波器通常放置在DAC和IQ调制器之间)。这样就会产生约13 dBm的输出功率。

ADI实验室电路:如何在IQ调制器的输出端提供固定功率增益

图4. 以输出功率(dBm)和输入电平(V p-p差分)

表示的电路传递函数

假设IQ调制器的I和Q输入端如上文所述通过100Ω 电阻端接,则可相对于典型DAC的dBFS驱动电平来绘制输出功率曲线(见图5)。因此,0 dBFS的驱动电平对应于1 V p-p,这样也就产生了与上文所述相同的13 dBm输出功率。

ADI实验室电路:如何在IQ调制器的输出端提供固定功率增益

图5. IQ调制器I和Q输入端通过100Ω电阻端接以及未端接情况下以输出功率和DAC驱动电平表示的电路传递函数

图5还显示了I和Q输入端未通过100 Ω电阻端接时电路的传递函数。由于得到的DAC电压驱动电平增加一倍(最大2 Vp-p),因此得到的输出功率相对于同样的DAC驱动电平增加了6 dB。

虽然在没有I和Q端接电阻的情况下电路也可以运行,但这确实为通常放置在DAC和IQ调制器之间的滤波器带来了一些问题。由于该滤波器一般两端都会端接,因此最好在IQ 调制器的I和Q输入端之间放置一些电阻(这些输入端的未端接输入电阻值约为60 kΩ)。可利用100 Ω to 1000 Ω 范围内的电阻值来提高得到的DAC电压驱动电平和对应的输出功率。但是,设计DAC和IQ调制器之间的滤波器时要小心谨慎,确保其支持不同的源阻抗和负载阻抗。

如上所述,从图4和图5中可以看出,采用1 V p-p正弦波(0dBFS)信号时输出功率约为13 dBm(I和Q输入端通过100 Ω电阻端接)。实际上,DAC驱动电平必须略低于0 dBFS,以减少失真(通常为1 dB至2 dB)。除此之外,均方根驱动电平也应该降低一些,具体幅度等于载波调制的峰均比。峰值包络功率(PEP)与均方根功率之比通常在5 dB(对于类似于QPSK的调制方案,在调制为恒定包络的特殊情况下则为0 dB)至10 dB(对于更高阶的QAM调制方案)范围内。参见图6,这表明0 dBm至10 dBm范围内的输出功率水平是可行的。

单载波宽带码分多址(WCDMA)信号的邻道功率比(ACPR)已成为评估电路系统级失真(也就是相对于仅依靠IP3和IMD电平的评估)的主流指标。图6显示了测得的电路ACPR与输出功率水平之间的关系。在采用WCDMA信号的情况下,ACPR定义为载波(带宽3.84 MHz)中的功率与邻道(通道间隔为5 MHz)中的功率之比,同样也是在3.84 MHz带宽条件下测量。该曲线还



评论


相关推荐

技术专区

关闭