新闻中心

EEPW首页>模拟技术>设计应用> Using the DS4412 to Margin the

Using the DS4412 to Margin the

作者: 时间:2011-05-29 来源:网络 收藏

Abstract: A DS4412 adjustable-current DAC is used to adjust the margin of a DC-DC converter's output voltage. This article describes how to properly select the resistor values of a DC-DC converter's feedback divider network when a DS4412 is employed in the design.

The Adjustable Power Supply

The DS4412 contains two I²C adjustable current sources capable of sinking and sourcing current. A typical application for these DACs is margining the output voltage of a DC-DC converter. (SeeFigure 1.)

Using the DS4412 to Margin the
Figure 1. DC-DC converter circuit with adjustable-current DACs used to margin the converter's output voltage.

The DS4412 sinks and sources from its OUT pins. Valid full-scale current values range from 0.5mA to 2.0mA. The value of the full-scale current, IFS, is determined by the size of the resistor connected to the DAC's FS pin of the corresponding OUT pin. The source/sink current generated by the DS4412 is most commonly used to adjust the DC-DC converter's feedback voltage divider.

Determining the Relationship Between VOUTand IFS

Choosing the right IFSdepends on how much margin is desired on the DC-DC converter's VOUTpin. To determine this margin, we must discover the relationship between VOUTand IFS.

Summing currents into the VFBnode, we find that:

Using the DS4412 to Margin the

Where:

Using the DS4412 to Margin the

And

Using the DS4412 to Margin the

However, since RBand VFBare constant, there is no change in IRB. Thus:

Using the DS4412 to Margin the

We are looking for the relationship between the margin on VOUT, ΔVOUT, and the selected range of IFS, ΔIFS. Since we know that the change in the IFScurrent equals the change in the current across RA, we can subtract one set of VOUTand IRAvalues from another to determine the relationship between VOUTand IFS.

First, solving Equation 3 to find VOUT, we find that:

Using the DS4412 to Margin the

Use Equation 5 to create two equations. For one equation, we chose the maximum margin on VOUT, VOUTMAX, and the maximum IRAcurrent, IRAMAX. For the other equation, we choose the nominal values for VOUTand IRA, VOUTNOMand IRANOM. Subtracting the two equations, we get:

Using the DS4412 to Margin the

Using Equation 4, Equation 6 translates into the relationship:

Using the DS4412 to Margin the

Equation 7 shows that the relationship between the margin on VOUTand IFSis determined by the value of the resistor RA.

Calculating the Right Resistor Value for the Margin on VOUT

Now that we know the relationship between VOUTand IFS, we can select the correct value of RAand, thus, RBto generate the desired margin on VOUT. Since the full-scale current sink/source range of the DS4412 is 0.5mA to 2.0mA, we select 1mA as the IFScurrent for the DAC. To set this value, choose RFSbased on the following equation found on page 6 of the DS4412 datasheet:

Using the DS4412 to Margin the

With VRFS= 0.607V, we solve Equation 8 and find that RFSneeds to be 4.612kΩ to produce a 1mA full-scale current.

With the DS4412 IFSselected, we must determine the size of RAto achieve the desired margin on VOUT. A 2.0V VOUTwith a 20% margin requires ±0.4V of change. Sinking and sourcing settings of the DS4412 will manage the sign. The change in IFSequals the IFSvalue of 1mA, and the desired change in VOUTis 0.4V. After substituting for ΔVOUTand ΔIFSin Equation 7, we solve for RAand get RA= 400Ω.

Determining the Relationship Between RAand RB

The feedback network of the circuit in Figure 1 is a voltage-divider with resistors RAand RB. Looking at Figure 1 and assuming IFS= 0A, we can create a simple voltage-divider equation.

Using the DS4412 to Margin the

We assume that the desired nominal value for VOUTis 2.0V and the DC-DC converter has a feedback voltage, VFB, of 0.8V. Substituting the values for VOUTand VFB, the relationship between RAand RBis determined to be

Using the DS4412 to Margin the

We use Equation 10 to solve for RBand get RB= 267Ω.

Conclusion

The resistive-feedback-divider network and the current-sinking/sourcing capabilities of the DS4412 DACs control the margin of VOUTof a DC-DC converter. The relationship between the full-scale current, IFS, to the margin on VOUTis determined by the value of the resistor RA. By choosing the correct IFSvalue for your application, you can determine the correct resistor values for the feedback divider network, and achieve the desired margin on VOUT.



评论


相关推荐

技术专区

关闭