新闻中心

EEPW首页>模拟技术>设计应用> 基于GPS的功角测量及同步相量在电力系统中的应

基于GPS的功角测量及同步相量在电力系统中的应

作者: 时间:2011-04-19 来源:网络 收藏
的齿轮,这60个齿大小完全一样,均布在圆盘上。转速表的测量电路负责检测齿轮所发出的脉冲,每60个脉冲代表转子旋转一周。转子的瞬时速度由下式表示(T0为两个相邻脉冲的时间间隔):

只要已知转子在初始时刻的位置θ0以及任意时刻的速度ωr(t),就可以准确地确定转子在任意时刻的位置θ(t)。ωr(t)由转速表负责测量,其测量精度与电力系统的稳定状态无关,所以在正确确定θ0后,能通用于电力系统的任意状态,并且也通用于汽轮发电机组和水轮发电机组。
文献[8]则提出利用转子位置检测器和发电机功角转速测量装置来直接获得系统功角和转速,进而监视系统稳定性。其中位置检测器由同轴装的3个圆盘组成,即发光盘、遮挡盘、光敏盘。光敏盘固定在定子上,遮挡盘与转子为弹性连接并同轴旋转。发光盘上装有发光二极管,光敏盘上装有光敏三极管,遮挡盘上有一个圆孔,当转子带动遮挡盘旋转后,光敏三极管收到光信号的变化,呈导通和截止两个状态。文献[9]也提出用发电机调速系统来直接测量发电机功角,是利用转速测量装置经分频得到与Eq向量的频率始终保持一致的正弦波,通过一定的算法与系统电压比相,再对所得相角预校正求出发电机的功角。
文献[10]提出了两种直接测量功角的方法:传送波形的测量方法和利用同步时钟的测量方法,并对两种测量方法精度和误差进行了分析。前者对通道的质量要求很高,要求调制解调器和传输通道在传送过程中不发生波形失真。另外收端必须对对方传送过来的波形进行时延和相移补偿,而由于气候、环境等因素的影响,时延和相移测量结果往往不很准确,这就严重地影响了功角测量的精度。如果利用两个精度很高的同步时钟即可避免上述问题。
文献[11]介绍了一种同步发电机功角的高精度测量方法。这种方法采用转子位置传感装置和误差软件补偿技术,并利用GPS高精度授时信号实现异地信息同步采集。用转子位置信号代替空载电势参与相位比较。转子位置信号通过装设转子位置传感装置获得。发电机功角可以通过测量转子位置信号与发电机端电压信号的相位差得到,其值等于空载时的相位差减去负载时的相位差。并对测量误差的来源、性质及其软件补偿技术作了描述。

2 同步相量的应用
随着基于同步技术的电网相角监测系统的采用,实时精确测量系统中各关键点的电压电流相量, 使得人们能实时地看到系统的状态,从而在电力系统中利用GPS同步相量实施相量控制这一电力系统稳定控制最直接的方法成为可能。
相角测量可望在电力系统的状态估计、静态稳定的监视、暂态稳定的预测及控制和自适应失步保护方面发挥其作用[2,12,13]:
1) 应用PMU在电力系统做了很多试验研究,如短路试验[14]、切机试验和甩负荷试验、发电机失磁试验[15]、线路的开断试验[16]等。通过PMU做的这些试验,使人们首次看到了系统的动态行为,认识到了以往所没有的现象和规律。对于动态电力系统建立的系统元件数学模型难以通过现场试验进行验证,数学模型的参数也很难准确确定,从而影响了数字仿真的精度和数学模型的适用范围。基于PMU的同步相量提供了一种验证数学模型和对其进行参数估计的基础。并能应用于系统负荷模型的建立,系统等值等方面。
2)系统的状态估计是一种数学方法,通常状态估计是解系统的特征非线性方程求解,确定系统的稳定性,然而其计算时间比较长,难以在暂态过程中得到应用。若系统在所有节点安置相角测量装置,它对电压相量的状态估计是一个线性估计或状态确定;若系统在部分节点安置相角测量装置并使系统可观察时,它对电压相量的状态估计是一个线性估计。因此将同步相量值加入到现有的状态估计中,可提高状态估计的精度,做到实时运行。
文献[17]归纳了由同步正序电压空间矢量族出发,网络的状态估计只需解线性代数方程,系统的动态状态估计便可方便地实现。文献[18]提出了称之为使潮流方程直接可解的PMU配置方案。通过讨论电压型PMU的配置,目标是使潮流方程直接可解。电力系统结构的高度的稀疏性,因此有可能通过对部分节点适当配置PMU,即适当安排节点类型中PQVΘ节点和PVΘ节点的数量和分布,可使潮流方程按一定顺序形成一种可解结构,形成一种非迭代的直接求解潮流方程的方案,进而可以获得全部节点的电压相量。并定量地分析引入PMU以后对状态估计精度的改善程度。
3)相角测量得到的同步相量能极大地改善系统稳定的预测及控制。
调度中心可根据各个点的实时相角,建立全系统的实时相角集中监视系统,给调度员提供预防故障的措施或减少事故影响的补救办法,根据相角信息可采取紧急措施(如切机、甩负荷、解列等),防止系统的崩溃。
最常用的预测方法是在实测相角曲线的基础上利用自回归(AR)、多项式[19,20]或频角关系等预测相对角度的轨迹,然后以角度大于某一限制值或依据预测模型的稳定性判断系统的稳定性。但是其误差随预测长度的增加变大,在暂态初期,轨迹变化较剧烈时,预测精度更难保证。而且角度判稳的标准一般为统计值,其正确性缺乏理论证明。
文献[21]提出分段恒流等效法。基本思想是直接利用电力系统的详细模型,用当前时刻的实测的电压向量作为输入,通过逐步积分法预测未来一段时间内系统的轨迹,在发电机角度变化的微小邻域内假定负荷为恒流源,当发电机角度超出界限时,更新负荷的等效恒流源。
文献[22]提出的方法的基本思路是由发电机的同调特性在大量仿真观察的基础上根据功角对发电机进行离线预分群,在线动态修正。另外还有为自适应失步保护[23]提供出口动作启动条件的稳定预测方法。它首先把系统等值成双机系统,然后利用安装在两个区域间联络线变电站的相量测量单元(PMU)测量的电压电流相量推算等值机的运行状态,再利用等面积法则(EAC)判断系统的稳定性,当发现系统失去稳定后该装置可以分离失步区域。
文献[24]提出了基于同步相量测量单元的预测型振荡解列方法。振荡中心两侧母线电压的相角差反映了功角差,利用该相角差的变化速度及符号,可以判定是同步振荡还是异步振荡以及滑差的情况,并实现预测解列功能。
S.E.Stanton等人从部分能量函数[25]出发,分析多机系统中单机的能量,提出用PMU检测发电机的转速ω的最大数值,并和由能量函数理论通过离线仿真求得的转速坎值比较决定切机量。
较新的智能预测法采用模式识别、神经网络和模糊推理等人工智能手段以实现暂态稳定的快速预测。如文献[26]提出的决策树法通过对不同运行方式和不同故障的仿真计算,仅使用机组的内电势角度作为输入,针对不同训练机集组合构造多个决策树。文[27]提出一种基于模糊神经网络实时预测系统暂态稳定性的方案。但它采用PMU在故障切除后8个周波内的测量结果作为输入,输入数为发电机数的6倍,当系统规模较大时,训练过程非常困难。文献[28]提出基于模糊分类的径向基网络模型及算法,先利用无导师学习方法按照样本的特性,对输入样本进行模糊分类,然后对各类样本分别训练径向基网络,进一步提高了训练速度。利用同步相量测量装置获得的故障后短时间内各发电机的功角,经简单运算后作为神经网络的输入,其输出为多机电力系统稳定性的分类结果。
另外,电压稳定分析中的方法如潮流多解法、雅可比矩阵奇异、灵敏度分析法等,都需要不同程度的复杂计算,应用于电力系统实时控制时存在一定的困难。国内外一些学者直接利用电压相量进行电压稳定分析和实时控制已作了一定的工作,F.Cubina等人的研究[29]认为,即使在复杂系统中,电压相量所含的信息足以确定电压稳定的裕度,并推导出用电压相量法来决定电压崩溃的近似指标算法。文献[30]提出了利用节点的实时信息:电压相量、电流等和来自系统的准实时信息,将整个系统等值,导出了电压稳定实用判据。文献[31]提出了基于图论的分簇算法和两个相关性的判据,用一个节点测量的电压相量代替整个簇的节点电压相量,形成近似雅可比矩阵,求出最小奇异值作为电压稳定近似指标,该方案已运用于实时控制中。文献[32]提出了利用节点电压相量计算的新的电力系统电压稳定指标(VSI),计及网络的不同拓扑结构,运用修改的图论方法导出寻找最弱传输路径的


评论


相关推荐

技术专区

关闭