新闻中心

EEPW首页>嵌入式系统>设计应用> 基于C8051F系列单片机的低功耗技术分析与设计

基于C8051F系列单片机的低功耗技术分析与设计

作者: 时间:2013-02-16 来源:网络 收藏

  1.2 数字设备的功耗分析

  数字设备的能量淌耗主要是由CPU电流的大小来衡量的。CPU的电源模式是决定CPU电流大小、工作电压及系统时钟频率的关键因素。通常,温度和数字外围设备对数字设备的功耗只有很小的影响。

  (1)OPU电源管理模式

  CPU有3种操作模式:正常状态,空闲状态与停止状态。通常,空闲状态的平均电流值受控于内部振荡器。正常模式时的电流值减去空闲模式时的电流值即为CPU正常运行的工作电流值。被唤醒后,CPU开始从设置空闲方式选择位指令的下一条指令开始执行。当写1到STOP位时,CPU进入停机模式。设置停机模式后,当前指令被执行完毕,内部振荡器及所有的数字外围设备全部停止工作。模拟外设(如比较器与外部振荡器)保留其当前的状态。在停止状态,mcu消耗最少的电流。

  (2)OPU工作电压、频率及温度对功耗的影响

  工作电压:CPU的工作电流会随着供电电压的升高而增大。这种关系存在于任意一种工作频率下,尤其在高频运行时表现得更为明显。理论上供电电压最小可达到2.7 V,但由于电压调整本身有±10%的误差率,因此系统通常供电电压不会低于3V。

  温度:温度对系统的功耗无影响。

  工作频率:CPU工作频率对系统功耗有主要影响。在CMOS数字逻辑器件中,功耗与系统时钟SYSCLK频率成正比:

  功耗=CV2f 式中:C是CMOS的负载电容;V是电源电压;f是SYSCLK的频率。

  因此,为了降低功耗,设计者必须知道给定系统所需的最高SYSCLK频率和精度。某些设计口可能需要其系统时钟频率在全部工作时间内保持不变。在这种情况下,设计者将选择满足要求的最低频率。并采用消耗最低功率的振荡器配置。

  l.3 数字外围设备与I/0接口的功耗分析

  数字外围设备(计数器、UART、PCA、SPl)的损耗占系统总功耗的比例很小。举个例子,当C8051F单片机工作在3.06MHz(内部振荡器8分频),3 V电压时,没有一个数字外围设备端口的工作电流超过700μA;而在启动计数器作为UARTO数据传输时钟后,系统的工作电流会增加18μA。这里,计数器与UART的功率损耗主要由其时钟频率及工作电压来决定。利用交叉开关配置通用I/O口为推挽模式,也能够影响功耗的大小。在上述例子中,如果利用交叉开关将UARTO的TX端分配到P0.4口,则配置端口为推挽模式将令系统的工作电流再增加82μA。输出引脚的功耗由连接在该引脚的外部电路频率决定。

  1.4 模拟外围设备的功耗

  模拟外围设备功耗是ADC、温度传感器、内部偏置电压产生器及内部振荡器的功耗和。通常,只要ADC、内部振荡器或温度传感器被激活,内部偏置电压产生器就会自动被使能,ADC在转换期间的工作电流比ADC没有转换时的工作电流大30%~50%。SAR转换时钟频率与采样频率也影响了功耗的大小。由于增加SAR转换时钟频率或降低采样率会缩短每次A/D转换的时间,使系统在转换间隙有更多的时间处于空闲状态,因此会大大降低系统功耗。

  2 降低功耗的几点考虑

  要降低系统的平均功耗,需要从两个方面考虑:首先是适当调整在所有时间一直影响系统工作的参数。通常工作电压是重点考虑的参数。工作电压决定了系统是否能够处于正常运作状态,它可以由电压调整器或一个电池来提供。对于一个节能系统,工作电压应该被最小化,以节约能量。第二点就是构建合理的固件结构降低以功耗。要为系统设计两个工作模式:一个为高效的运作模式;另一个则是以降低功耗为日地的睡眠模式。两个模式的设计标准不同,但应尽量让系统在大部分时间内处于睡眠模式,以降低系统的总功耗。下面详细讨论这两个方面的设计。

  2.1 降低工作电压、减小工作电流

  工作电压对系统的总功耗起着举足轻重的作用。对于节能系统。应该尽量在保证系统安全可靠的前提下采用最低的工作电压。通常电压调整器会有土10%的误差率,因此在设计工作电压时,最低的工作电压应该为3V,此时电压调整器的输出电压在2.7V与3.3V之间。也可以选择用电池。无须担心电池耗尽时会对系统工作有不良的影响,因为在单片机中,片上电源监控器能够确保在电池耗尽后系统自动复位。

  由于工作电压通常是恒定的,因此经常通过减小平均电流来降低系统的总功耗。平均工作电流是系统在单位时间内消耗的电荷量。对一个系统来说,其总的运行时间应该被分为两个部分——高效工作期与低功耗体眠期,如图l所示。设计者应该尽量从这两方面着手设计系统,以达到降低总功耗的目的。

  2.2 设计一个低功耗的休眠模式

  可以通过设计低功耗休眠模式,令系统在非工作期一直处于低消耗状态,从而达到减小整个系统工作电流的目的。休眠模式可以通过将电源管理模式设定为空闲或停机状态来实现。通常会设定空闲模式,因为该模式更容易被恢复。需要注意的是,在休眠模式下应该关闭所有不需要的外围设备,并配置体眠模式的时钟为外部振荡器。因为外部振荡器能够禁止内部振荡器的振荡,并能以非常低的时钟基准进行振荡。这里有两个可选的振荡器:36.728kHz晶振与单电容模式外部振荡器。

  2.3 设计一个高效运作模式

  高效运作模式的设计应该以尽可能缩短完成作业所需时间为标准,使得系统能够尽快地恢复到休眠模式。模式的设计包括调整工作电流的峰值以及时钟频率,以减小高效工作期问的总电荷量。通常在高效工作模式下使用内部振荡器,更有益于系统总功耗的降低。

  下面以ADC采样为例,比较、分析两种设计中系统功耗的消耗率情况。

  片上温度传感器以10Hz速率采样,系统的外部晶振连接到XTAL1与XTAL2之间。定时器2每100ms溢出产生一个中断,将系统从空闲模式唤醒。当系统被激活后,系统捕捉ADC采样数据,然后重新返回空闲模式,直到下一个中断发生。

  由于该系统是电池供电,因此系统应尽量减少每次A/D采样所消耗的电荷。由于电荷量是一段时间内电流的总量,因此可以通过缩短采样时间或减小采样时的峰值电流来节约能量。也就是说,在捕捉ADC采样数据时,系统可以选择转换到3MHz的内部振荡器,在短时间内使用大的电流;或是用外部32kHz晶振作为系统振荡器,使单片机在长时间内使用较小的电流值。

  第1个系统从空闭模式被唤醒后,系统直接启动了ADC设备开始采样。系统没有转换到内部振荡器,而是仍采用原来的32kHz晶振作为系统的时钟基准。A/D转换结束后,系统读取采样值,关闭ADC并重新进入空闲模式。为了捕捉采样数据,系统在峰值工作电流O.65mA上持续了1.5ms。转换完成后,读ADC数据,而后停止ADC及内部振荡器并令CPU回到空闲模式。为了捕捉ADC采样数据,系统在峰值工作电流2.2 mA上持续了400μs。利用公式:

  为确保系统处理结果的精确度,A/D转换器和D/A转换器必须具有足够的转换精度;如果要实现快速变化信号的实时控制与检测,A/D与D/A转换器还要求具有较高的转换速度。转换精度与转换速度是衡量A/D与D/A转换器的重要技术指标。随着集成技术的发展,现已研制和生产出许多单片的和混合集成型的A/D和D/A转换器,它们具有愈来愈先进的技术指标。

  计算可得,第1种设计系统的平均电流为15μA;而第2种设计系统的平均工作电流为14μA。在3V锂电池供电的情况下。第1种设计电池的寿命为4000h;而第2种设计电池的寿命为42000h。

  从这个例子可以看出,在系统高效工作时提高系统的叫钟频率能够减小系统的平均工作电流,从而降低系统的总功耗。


上一页 1 2 下一页

评论


技术专区

关闭