新闻中心

EEPW首页>电源与新能源>设计应用> 架空输电线路雷电过电压识别

架空输电线路雷电过电压识别

作者: 时间:2012-12-17 来源:网络 收藏
图6 所示。图中, ZA 为横担波阻抗, ZT 为支柱波阻抗, ZL为支架波阻抗, Rg 为杆塔冲击接地电阻。绝缘子采用压控开关模型,线路避雷器采用IEEE 推荐的非线性模型。线路跨距为200 m ,计算时避雷线不做消去处理,以考虑避雷线对雷电流传播过程的影响。雷电流采用防雷设计标准波形,波头为2. 6μs ,波长为50μs。为准确模拟电流行波在输电线路中的传输特性,模型采用多个200 m 跨距线路与杆塔模型串联而成。

架空输电线路雷电过电压识别

图5  220 kV输电系统模型图

杆塔结构及波阻抗模型

图6  杆塔结构及波阻抗模型

 2. 2  时域波形分析

  利用上述模型,分别对输电线路遭受感应、绕击、反击3 种情形进行了仿真。在雷击点后1 km 处采样,获取输电线路电流信号。3 种的电流行波如图7~9 所示。

感应雷过电压三相电流波形

图7  感应雷过电压三相电流波形

反击三相电流波形
图8  反击三相电流波形

绕击三相电流波形
图9  绕击三相电流波形

  由图7~9 可以看出,感应雷过电压的三相电流行波为感应电流行波,经过衰减后,三相仍基本相似。反击过电压的三相电流行波电流大幅度跃升之前,存在电磁耦合电流分量,该电磁耦合分量陡度小,上升时间长;绝缘子串击穿之后,由于大量雷电流注入导线,电流行波幅值跃升,陡度增大。绕击过电压没有电磁耦合电流的存在,电流行波在发生雷击后迅速跃升。因此,三相电流行波相似程度大小以及电磁耦合电流存在与否是判断类型的重要特征。

  3  输电线路雷电过电压识别判据

  由上述分析,3 种雷电过电压的电流行波区别主要体现在三相电流行波相似程度以及电磁耦合电流行波的存在。感应雷电过电压三相电流行波相似度较高,而直击雷电过电压由于雷电流的直接注入,三相电流相似度较低。基于这一特点,提出感应雷点过电压与直击雷电过电压的识别判据:


  式中, S Thres为感应雷过电压幅值判据门限值; Smin 为三相电流行波的最小相似度。对于信号X ( n) 和Y ( n) ,其相似度S 计算公式为:


  在实际计算中,为排除闪络后引起的干扰并降低计算量,取电流行波峰值前4μs 作为相似度计算区间。当Smin大于门限值时,判定为感应雷过电压。反之,则认定为直击雷电过电压。

  发生反击雷电过电压,绝缘子串未击穿时,电流行波只含有幅值较低的电磁耦合分量,绝缘子串击穿后,雷电流注入导线,闪络相电流行波为雷电流,幅值大幅跃升。设Imax为被击相电流行波幅值最大值,根据仿真结果,电磁耦合分量的电流行波幅值约为5 %Imax 。因此,反击时电流行波幅值在大幅跃升之前,先有一个幅值约为5 %Imax的上升过程。在该上升过程中,电流行波陡度较低,上升时间较长,绝缘子被击穿后,雷电流注入,电流行波陡度增大,上升时间较短。绕击时,由于雷电流在绝缘子击穿之前已经直接注入导线,导致被击相电流行波无电磁耦合电流分量的存在,陡度较大,上升时间较短。

  设t2 %为监测到雷电流行波幅值达到2 %Imax的时间点, t5 % 、t50 %以此类推。由于雷电流准确的起始点难于确定,以t2 %作为计算起始点。为避免雷电流反射行波的影响,以电流行波达到50 %Imax 所用时间t1 来表征雷电流的上升时间,以电流行波达到5 %Imax 所用时间t2 来表征空间电磁耦合行波的上升时间,并定义其比值为ρ,其计算公式为:


  对于反击雷电过电压,由于存在电磁耦合分量,t2 为电磁感应电流行波的上升时间, t1 为注入导线的雷电流上升时间,由于电磁耦合分量陡度较低,上升时间较长,而雷电流陡度相对较大,上升时间较短。因此,发生反击时参数ρ数值将偏小。对于绕击,由于不存在电磁耦合分量, t2 、t1 分别为雷电流在达到50 %Imax 和5 %Imax 所用的时间。因此,发生绕击时,参数ρ将> 1 。据此特点,绕击、反击雷电过电压的识别判据为:


  式中,ρThres为绕击、反击的判据门限值。

  总结前述分析,对感应、绕击、反击3 种雷电过电压的识别流程如图10 所示。

雷电过电压识别流程图

图10  雷电过电压识别流程图

4  仿真验证

  本文在前述仿真模型的基础上,对感应、绕击、反击3 种雷电过电压进行了多次仿真。雷电流采用防雷设计标准波形2. 6/ 50μs 波形。分别在雷击点后1 ,1. 5 ,3 ,5 km 等4 个距离点采集雷电流行波,计算3 种过电压的Smin ,ρ等特征参数。仿真计算结果如表1 所示。

表1  感应雷,绕击与反击特征参数

感应雷,绕击与反击特征参数

  根据表1 可见,将S Thres设定为0. 8 ,ρThres设定为2. 5 ,利用本文所提出的判据,即可在线路后方对前方所发生的雷电过电压类型做出准确判断。不同雷电流波形下的仿真结果表明,所提取的特征量基本不受雷电流波形分散性的影响。本文在不同电压等级系统下仿真表明, 该方法对110 、220 、500 kV 电压等级系统都适用。由于信号沿线衰减,根据仿真结果,当信号采样点与雷击点距离> 8 km 时,电磁感应分量电流行波基本衰减为零,对反击和绕击雷电过电压判据失效。由于三相导线衰减程度基本相同,对感应和直击雷电过电压的判据仍然有效。雷电流行波信号获取方式,可以考虑参考文献[ 20 ]和[21 ]所提出的方式。

 5  线路其它因素的影响

  5. 1  冲击电晕的影响

  由于冲击电晕的作用,在实际发生过电压时,线路对地电容增大,电流行波波形会发生畸变,陡度会降低。EMTP 仿真软件尚未能模拟该过程。考虑三相导线在冲击电晕作用下衰减畸变程度基本相等,冲击电晕不会对波形相似度产生影响。而对于绕击与反击的识别,由于冲击电晕主要作用于发生在雷电流注入导线之后,使得电流行波在[ 5 % Imax , 50 % Imax ]区间的上升时间增加,而电流行波在[ 2 % Imax , 5 %Imax ]区间内的上升时间基本不会受冲击电晕影响。因此,实际线路的特征量ρ比仿真结果总体偏大,只要适当调整阈值,即可避开冲击电晕的影响[22 ] 。

5. 2  反击时感应过电压的影响

  雷击杆塔并发生反击时,在绝缘子闪络之前,空间电磁场变化会在输电线路上产生感应过电压,该感应过电压会在输电线路上产生感应电流行波。目前的仿真软件也未能对这一过程进行仿真。该感应电流行波的存在,会使绝缘子串闪络前电流行波的幅值略有增加。由于感应过电压的陡度相对直击雷较低,考虑感应雷过电压后,绝缘子闪络前电流行波陡度较雷电流行波仍较低,故感应电流行波不会对本文提出的绕击与反击的判据产生根本性的影响。本文根据电磁耦合电流行波幅值约为5 %Imax这一仿真结果,定义的上升时间比ρ的计算区间为[ 2 % Imax , 5 % Imax ]和[ 5 % Imax , 100 % Imax ] 。在实际应用中,考虑到感应电流行波的影响,将ρ的计算区间根据实际运行情况稍作调整,即可避开反击时雷击杆塔感应过电压的影响。

 5. 3  输电线路接线端的影响



评论


技术专区

关闭