新闻中心

EEPW首页>嵌入式系统>设计应用> 手机USB充电面临的绿色挑战

手机USB充电面临的绿色挑战

作者: 时间:2013-07-03 来源:网络 收藏


最危险的是经常发生的。因为闪电在输电线上引起的浪涌电压不只是在很少发生的房屋直接遭受雷击时才会感应到。事实上,每次闪电击中电源线或仅仅击中电源线附近的大地时,都会在(掩埋的)地线上产生增压。这个波(电压和电流)会通过电源线快速传播,并穿过中心电站中的各个保护设备,甚至家庭的分电箱。然后,一个残留的浪涌电压会直接传送到插着手机的电源插座上。

这个残留浪涌电压被表征为与雷击波形相关的尖峰di/dt。大量实验和测量已经将这样的浪涌电流模型化为下面的波形,在IEC61000-4-5中被定义为8/20μs脉冲。

在电流峰值的10%和90%之间的电流上升时间被规定为8μs,电流在20μs以后必须减小到峰值的一半。

对设计使用低电压和低电流工作的电子设备来说这种过电流确实非常危险。一个好的保护装置必须能够通过地(GND)吸收掉这个过电流,并保持一个低的箝位电压,从而保护充电电路不受损坏。

这种浪涌电压比ESD浪涌更加强大,对设计师来说是一个更艰巨的挑战。

在法国(55万平方公里),每年有100万次雷击击中大地!因此这种现象并不是意外。即使雷电击中房屋的概率很小,但一年内击中房屋周围几公里内的一棵树或地面的概率接近100%。

家用电器不太容易遭受这些浪涌的侵害,但电子设备却很容易。计算机、电视机等家电在设计时就考虑到了要插入输电线,因此都有完善的保护。其他便携式设备则采用带有合适保护装置的专用充电器,或通过可拆装电池供电。但是,如果一个通用充电器出于成本原因不能有效防止这种浪涌电压,那么手机就很容易在充电时受损。

由于工业事件或中高压电源线上的开关动作而引起的浪涌电压,也可以模型化为8/20μs波形,但峰值电流会低一些。它们发生的概率也是很高的。

第二个挑战是保护器件上的功耗。能够保护设备免受8/20μs之类浪涌电压伤害的TVS二极管到处都有,但它们的漏电流可能高达20μA。通过一个很简单的计算可以发现,对于一个拥有1,000mAh的电池和400小时待机时间的手机来说,在偏置线上增加这样一个器件将使待机时间缩短大约1%!

解决方案建议

设计师要在保护器件微型化、浪涌电压下的效率,以及功耗之间做出艰难的权衡。

图2是手机的一个典型拓扑例子,它在上述三个参数之间提供了可接受的折衷方案:

newmaker.com
F2:USB的VBUS线采用的保护拓扑例子

TVS二极管连接在充电器IC和USB连接器之间。TVS二极管越靠近连接器,ESD性能就越好。事实上,由造成电压增加(V=Ldi/dt)的PCB金属走线引起的ESD事件和保护电路之间的寄生电感也能被最小化。这种二极管可以承受30kV的接触放电电压(IEC61000-4-2)。对于这种应用来说,8/20μs的性能很关键。在这种情况下,为了保护充电器芯片,二极管将吸收27A的峰值脉冲电流(IPP)到GND。这意味着,到达插座和器的浪涌电流可能达27A,这个电流将被GND吸收,而不会损坏TVS二极管或充电电路。充电器芯片见到的电压在遭受浪涌期间(数十毫秒)不会超过18.5V,因此不会对芯片的完整性造成影响。总的峰值脉冲功率约500W。

如果出于任何理由,将TVS二极管连接到VBAT或另外一条永久偏置线,那么TVS二极管的漏电流必须非常低。这种解决方案的漏电流为0.5μA时可以满足便携式设备的要求。

最后,解决方案的必须非常小,以便在已经集成了许多功能和许多芯片的PCB上得以实现。ESDA8V2-1MX2采用1.0mmx1.45mm的微型QFN封装,最大厚度只有0.6mm。(end)

上一页 1 2 下一页

评论


相关推荐

技术专区

关闭