新闻中心

EEPW首页>嵌入式系统>设计应用> 设计用于自动化的工业现场总线网络

设计用于自动化的工业现场总线网络

作者: 时间:2012-10-15 来源:网络 收藏

数据速率

所有通信的基本功能都是在不同地点之间传输数据。数据速率是在一定时间内传输的数据量。但是,不同的数据速率可以采用不同方法测量。对于模拟通信(如 4-20mA)来说,速率受到电路元件带宽的限制。对于数字通信,速率取决于每秒传输的比特数(二进制数字)以及对于相关应用实际传输的有效比特比例。

速度相关的另一个参数是数据时延,即:从一个节点发送数据到另一个节点收到数据的时间间隔。数据速率、收发器传播延迟、介质传播延迟和协议开销都会影响数据时延。

收发器传播延迟一般在 1 微秒以下;介质(光纤或铜线)的传播延迟只有光速的几分之几,因此每米线缆的延迟约为 3~5 纳秒。所以,只有在超长线缆(或超高速网络)中介质延迟才较为明显。协议延迟是指,除了消息的数据有效负载之外所需的协议开销(奇偶校验、寻址、错误检测、握手位)造成的延迟。该延迟随网络标准的不同而各异,但是对于格式复杂的较高级协议比较明显。

数据速率与数据时延差异说明如下:

高数据速率/数据时延大 - 收听西班牙语体育节目的录音带

低数据速率/数据时延小 - 通过电话收听 James Earl Jones 实况节目

噪声抗扰度

工业环境面临大电流组件产生的挑战,如:马达、电泵、开关电源、焊接设备以及机器人技术等。为了确保可靠的网络运行,必须具备对上述噪声源的抗扰能力。物理层需要合理接地、绝缘以及收发器功能。网络中的高信号电平会提高信噪比。尽可能高的接收机阈值电平(常称为“噪声抑制”)可以从噪声中分辨出有效信号。接收机阈值的滞后作用可以降低信号转换过程中噪声造成错误开关的可能性。 图2说明滞后作用是如何提高噪声抑制的。


图2: 接收机阈值滞后作用

不过,上述每种噪声抗扰度的改善都需要付出一定代价。高信号电平需要更高的功率,因而有可能对其他组件产生噪声。高接收机阈值意味着系统更易出现介质信号损失,从而缩短允许的网络长度。接收机滞后作用在不合理均衡的情况下会产生传播延迟和脉宽失真。请注意在图 2 中,滞后作用下的接收机输出与无滞后作用时相比出现微小的响应延迟。

网络长度

网络的另一个指标是数据能够传输的距离。工业网络通常需要较消费类、计算机或车载应用更长的连接距离。限制可允许的网络长度的因素包括:介质损耗与电噪声感应 (Noise pickup) (二者都会影响信噪比)以及介质的传播延迟(影响时延)。

无论介质是铜线、光纤还是无线电都会出现损耗。光纤损耗极低(λ=1310 nm 时为 0.3 dB/1000m),因此采用光网络可以实现超长距离的连接。典型的双绞线铜线具有较高的损耗,频率为 1 MHz 时每 100 米的损耗约为 1.5dB~5dB。如欲了解有关各种网络的典型线缆衰减对比,请参见图 4 。

TIA/EIA-485-A 标准 (RS-485) 规定的单位负载将假设的电流-电压负载单位定义为对比收发器的依据。RS-485 收发器提供额定 1/8 单位负载,在不超过标准情况下在同一总线上允许挂接多达 8′32 或 256 个收发器。


图4 :双绞线线缆每单位长度衰减与频率的关系图

网络标准通过要求比接收电平高得多的发送信号幅度来弥补介质损耗。例如,RS-485 信令要求至少 1.5 V 的驱动器输出以及 200 mV 的接收机阈值。这样可以产生 7.5 的系数,或者 17.5dB 余量,这使低信令速率下的线缆长度可允许达到 1,200 米左右。表 3 显示了典型工业网络的计算范例。请注意:确定最长允许网络长度时介质损耗并非唯一需要考虑的因素。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭