新闻中心

EEPW首页>嵌入式系统>设计应用> 基于AD9858宽带雷达信号源的设计及应用

基于AD9858宽带雷达信号源的设计及应用

作者: 时间:2015-05-04 来源:网络 收藏

  3 系统组成

本文引用地址://m.amcfsurvey.com/article/273575.htm

  由产生的雷达信号源的系统组成框图如图3所示。主要由、单片机MCU和CPLD(可编程逻辑器件)构成,其中直接从外部引入l GHz信号作为工作时钟。

由AD9858产生的雷达信号源的系统组成框图

  该系统在工作时,控制计算机通过串口发出控制信号以决定系统产生波形的种类及参数,并将频率码打入单片机内部。CPLD的作用是产生系统所需要的全部控制信号,并根据操作模式控制信号来决定所产生波形的周期,从而使其向AD9858发控制字,并产生预期的信号波形。AD9858采用差动电流输出,然后经偏压电阻网络形成输出电压,再经上变频电路送至微波接口。其编程时序如图4所示,AD9858内部寄存器的值在FUD的上升后被更新。

编程时序

  该系统的优点是结构简单、体积小、易于调试、输出线性调频信号相位连续、谐波抑制好。

  4 信号产生

  用高速器件AD9858可方便产生宽带雷达信号,如单频脉冲、线性调频信号及编码调制信号。对AD9858来说,产生单频信号的方法比较简单,只要更新频率调节字寄存器内容并且在控制功能寄存器中设置为单频模式即可,因此以下主要介绍线性调频信号及编码调制信号产生的方法。

  4.1 线性调频信号的产生

  AD9858具有自动频率扫描功能,由频率累加器来完成。频率累加器重复将一个频率增长值加到当前的频率值,这样使DDS产生的频率随时间改变。频率增长值由用户预先写入的△频率调整字(DFTW)来决定,而频率增长速度则由写入的△频率跳变字(DFRRW)来决定,这2个寄存器使得AD9858能从由频率调整字(FTW)决定的起始频率开始,以期望的速率和步长向上或者向下线性扫描。图5展示出了扫频信号的产生。

扫频信号的产生

  DFRRW寄存器是一个减数计数器,当计数到零时,频率更新一次。DFRRW的单位值对应的时间值为SYSCLK/8,若时钟频率为l GHz,DFRRW为l,此时频率更新时间是8 ns,更新速度达到最大值125 MHz。DFTW寄存器用来声明是向上还是向下扫描:正数向上扫描,负数相反。

  扫描不能自动停止在所期望的频率上,用户必须事先计算出到达期望频率的时间,然后写0到DFRRW寄存器中,使AD9858停止扫描,计算扫描时间:

公式

  式中,T是频率扫描的时间间隔;fs是起始频率,计算公式如下:

公式

  fF是终止频率。

  起始频率存储在FTW中,这个值在整个扫描过程中不会改变。将控制寄存器中的自动清除频率累加器位置1,频率累加器清零,AD9858回到起始频率开始新一轮扫描。

  4.2 相位编码调制信号产生

  相对于ADI公司以往的DDS而言,AD9858的优势在于具有4套频率发生寄存器及4个相位调整寄存器,这使得它可以方便快速产生编码调制信号,而且其转换时间很短。这是因为这4组控制寄存器的选择是依靠外部选择信号PSl、PS0来实现的,这2根选择信号连接到CPLD的可编程I/0输出引脚,通过它们对I/0引脚进行操作的时间远远小于对数据总线的操作时间。因此可以方便地产生二相或四相编码调制信号。下面以四相码为例简要说明AD9858产生编码调制信号的控制流程,其时序如图6所示。

时序图

  1)向AD9858的4个相位调整寄存器内置入0°、90°、180°及270°;

  2)向AD9858的4个频率字控制寄存器内置入编码调制信号的基率;

  3)控制CPLD向AD9858的FUD引脚发出频率更新信号并产生波形,同时启动MCU内部定时器对码元宽度进行计数;

  4)在MCU中断服务程序中发相位选择信号,即控制PSI、PS0以进行相位选择。

  由以上的测试图可知:在窄带(1 MHz)条件下输出26、65和375 MHz的信号杂散分别为:87,80,78 dBc;在宽带(500 MHz)条件下输出26 MHz的信号杂散为64 dBc。

  通过实际使用情况来看,用AD9858设计的信号源工作平稳,精度高,且工作带宽也较大(可稳定工作于400 MHz),各项指标符合使用要求。从测量情况来看,DDS频率合成器试验表明,采用AD9858产生的4相码编码调制信号码元之间的间隔仅为几十ns甚至更低,这是其他DDS器件所无法达到的。

  5 实验及测试结果

  通过以上的讨论,构建了宽带雷达信号产生器,其实物如图7所示,并对其进行测试。

实物图

  测试时,采用的是点频模式,这样方便对其杂散性能指标进行测试,产生的点频分别为窄带(1 MHz)26 MHz,65,375 MHz以及宽带(500 MHz)26 MHz信号。测试的结果分别如图8窄带点频信号及图9宽带点频信号所示。图8和图9是利用示波器直接对信号进行测试的结果。

利用示波器直接对信号进行测试的结果

利用示波器直接对信号进行测试的结果

  由以上的测试图可知:在窄带(1 MHz)条件下输出26、65和375 MHz的信号杂散分别为:87,80,78 dBc;在宽带(500 MHz)条件下输出26 MHz的信号杂散为64 dBc。

  通过实际使用情况来看,用AD9858设计的信号源工作平稳,精度高,且工作带宽也较大(可稳定工作于400 MHz),各项指标符合使用要求。从测量情况来看,DDS频率合成器的频率纯度和稳定度相当高,其在窄带时无杂散动态范同SFDR优于75 dBc,宽带无杂散动态范围SFDR优于55 dB。

  6 结束语

  本文介绍了DDS的基本原理及DDS芯片AD9858的结构和功能,对所设计的系统的结构进行了论述,对采用单片机+CPLD的方法控制AD9858实现宽带雷达信号源进行了详细说明。实验结果表明,该系统设计比以往的系统速度要快3倍,但功耗却不增加,用该系统设计构成的信号源产生的信号精度高,转换速度快。

模拟信号相关文章:什么是模拟信号


低通滤波器相关文章:低通滤波器原理


分频器相关文章:分频器原理
混频器相关文章:混频器原理
锁相环相关文章:锁相环原理

上一页 1 2 下一页

关键词:AD9858DDS

评论


相关推荐

技术专区

关闭