新闻中心

EEPW首页>电源与新能源>设计应用> 微型温差电池的无线传感器节点自供电系统设计

微型温差电池的无线传感器节点自供电系统设计

作者: 时间:2015-06-12 来源:网络 收藏

  在实际应用中按照这些阻值选择电阻连接电路即可实现对于储能电容器充放电的监测和保护,延长储能电容器的工作寿命。

本文引用地址://m.amcfsurvey.com/article/275626.htm

  2.3双电压比较器MIC841N为核心的比较器电路设计

  在本文中,采用MIC841N作为电压比较器,通过该比较器可以实现对储能电容存储电压的检测,并对后续的线性稳压器的工作状态进行控制。如图4所示是MIC841N的工作参考电路,本文依托参考电路,合理设置外围电阻等器件参数,来实现其比较控制功能。

  图4 MIC841N双电压比较器工作参考电路

  首先,如图4所示,连接好电路,其Vin端接前面电路的储能电容器的正极;Vin端通过电阻R2接入LTH端;LTH端和HTH端通过电阻R3相连;HTH端接电阻R4然后接地;Vout接TPS78001芯片的EN端。

  然后按照以下的方法确定MIC841N的外围电阻的阻值:

  根据MIC841N芯片的特性,低电压阈值为:

  对于MIC841N芯片来说,VREF=1.240V.

  由于本文是要驱动一个无线发射模块,根据本文所使用的无线发射模块的工作电压范围(2.4V-3.0V),所以VIN(lo)=2.4V,VIN(lo)=3.0V,由此本文可以确定外围电阻R4,R2,R3的阻值。本文在实际操作中,设定R4+R2+R3=1MΩ,结合公式(6)和公式(7),本文可以计算出:R4=484KΩ,R2=413KΩ,R3=103KΩ。

  微型温差发电器采集到的能量给储能电容器充电是一个储能电容器两端的电压逐渐升高的过程,而其放电过程是一个电容器两端的电压缓慢下降的过程。输入双电压比较器MIC841N的Vin处的电压即是电容器两端的电压,那么MIC841N的输出结果如图5所示。

  图5 MIC841N芯片工作功能图

  从该输出结果本文可以看出,只有电容器的电压在一定的范围内的时候才能输出一个高电平,这恰恰可以用来控制后续稳压器模块的中断,进而最有效的利用能量。

  2.4 TPS78001为核心的储能电容器放电稳压电路设计

  在实际的应用中,储能电容器这种电能存储设备两端的电压会随着放电时间的延长逐渐下降。在本文研究的实例中,微型温差发电器采集到的能量很有限,而后续的无线射频发射模块需要工作在一定的电压范围内,如果任由储能电容器自由放电,那么无线射频发射模块只会工作很短时间,其他时间电容器的电压都不够无线射频发射模块使用,这部分电能就会被浪费掉,为了解决这个问题,必须需要添加一个受控的稳压器来使储能电容器的放电电压稳定在一个可以使无线射频发射模块工作电压值。

  本文采用了TPS78001芯片作为稳压输出设备。如图6所示为TPS78001的工作参考电路图。

  首先按照图6连接电路图。IN端接储能电容器的正极;EN使能端接MIC841N的OUT端;OUT端和FB端之间接电阻R5;FB端接R6然后接地;OUT端输出一个稳定的电压,可设置,在本文中为3V,供给后面的无线发射模块使用。

  图6电路C稳压器电路原理图

  然后根据以下方法确定外围电阻的阻值。

  TPS78001的输出电压可以通过设定电阻R1和R2的值稳定在1.2V-5.1V之间的任何一个值。Vout和VFB的关系如方程(7)所示。

(7)

  VFB是一个内部设定的参考电压,它的值为恒定的1.216V,而Vout需要稳定在3V左右,因此可得两个电阻之间的关系。本文在实际应用中设定R6=1MΩ,因此。

传感器相关文章:传感器工作原理




评论


相关推荐

技术专区

关闭