新闻中心

EEPW首页>医疗电子>设计应用> 基于MSP430的便携式运动量及生理参数监测仪设计

基于MSP430的便携式运动量及生理参数监测仪设计

作者:焦纯 卢虹冰 王舒宜 周智明 张国鹏 常小红 西安第四军医大学生物医学工程系 时间:2009-12-10 来源:电子产品世界 收藏

  由于心电信号的检测电路一般都较为复杂,因此也可以采用市面上已有的心电信号检测的功能模块供二次开发使用。具体如BT007七通道心电模块,能输出同步七通道心电波,具有四级程控增益,三级滤波方式(诊断方式、监护方式和手术方式),具有起搏脉冲抑制功能和导联脱落报警功能,其检测的心电信号结果也可以通过串行接口输出。

本文引用地址://m.amcfsurvey.com/article/101037.htm

  本的中央控制单元F149微控制器内包含有两个串行通信接口—USART0和USART1,故可以直接接收数字式血氧模块和心电模块输出的血氧饱和度、心率及心电信号的数据。这种直接采用已有集成式功能模块进行二次开发的设计思路,可以有效降低本系统的设计难度和提高系统集成度。

  数据存储单元

  由于需要存储大量的现场数据,对数据存储容量的要求很高,存储密度较低的EEPROM、SRAM等均不能满足要求。ATMEL公司的AT45系列SPI串行接口FLASH存储器的接口电平与F149相匹配,硬件上能直接连接。采用SPI串行三线接口,减少了I/O资源占用,能有效降低系统所占空间,提高系统可靠性,降低开关噪声。AT45系列存储器芯片的内部还包括2个SRAM类型的数据缓冲区,每个缓冲区的容量均与主存储器阵列中一个页面的存储容量相同。这样即使在存储器被烧写的过程中也允许接收数据,这就为数据存储的实时性和可靠性提供了硬件保证。

  本中也可以采用并行的FLASH存储器,如三星电子的K9xxGxxxxM系列NAND FLASH芯片,能够提供4224M位的存储容量。这种高存储密度、大容量的并行FLASH数据存储芯片特别适用于本系统需要存储大量实时的运动数据、生理数据的应用环境。

  数据存储程序

  数据存储程序设计时要重点考虑微功耗和实时性要求,即数据存储程序应是基于中断程序结构的,通过A/D中断服务子程序来实时采集和存储来自于运动监测模块的三维运动数据,通过2个串行通信接收中断服务子程序来分别接收和存储来自于血氧模块和心电模块的血氧饱和度、心率、体温和心电信号等生理数据。这些运动和生理数据首先由F149微控制器放置于其内的2KB数据RAM内,并通过页写入方式存储到FLASH数据存储芯片中。

  由于来自于运动监测模块的三维运动数据是多通道、连续变化的大量数据,考虑到数据采集过程中的微功耗和实时性要求,对F149的A/D转换模块采用序列通道单次转换模式较为合适,其时序控制简单,灵活性高。同时采用Timer_A定时器为A/D转换模块定时,使其工作在增计数模式,其定时时间对应于采样频率。

  用于接收生理数据的串行通信接收子程序也是基于中断响应模式的,由32768Hz的时钟晶振提供串行通信的时钟信号源,通过2个串行通信接收中断的响应子程序分别将接收到的血氧饱和度、心率、体温和心电数据填充到系统的数据RAM中。

  在利用FLASH数据存储芯片存储本系统不同类别的大量数据时,需要注意F149内数据缓冲区的划分、数据存储芯片内不同数据区域的划分。同时,在系统的主程序中需要维护几个重要变量:如一个记录页面编号的全局变量,以确定数据读写时所需访问的页面;以及一个缓冲区标志的变量,使得程序能够根据标志判断当前缓冲区是否存满、是否需要切换及切换到哪个缓冲区。

  另外,在编写FLASH芯片的数据写子程序时需要注意数据采集、接收与数据存储之间的时序配合,以保证数据采集、接收的连续性和数据的不丢失。同时数据读写过程中稳定的时钟信号也是需要优先考虑的,而这点往往为设计者所忽略。



评论


相关推荐

技术专区

关闭