新闻中心

EEPW首页>EDA/PCB>业界动态> 后摩尔定律时代谁来主导芯片产业

后摩尔定律时代谁来主导芯片产业

作者: 时间:2010-03-29 来源:计算机世界 收藏

  惠普实验室已利用30纳米宽的钛线和铂线制造出交叉线设计的原型,而采用的材料和工艺类似于目前半导体行业所用的材料和工艺。惠普公司的研究人员认为,每条线的宽度最小能做到8纳米。另外也有几个研究小组在研究用硅、钛和硫化银做成交叉线。

本文引用地址://m.amcfsurvey.com/article/107396.htm

  光子计算:与光一样快

  替代硅芯片的全新技术仍然还处于研发初期,真正的商用产品可能十年后才会问世,但到那时可能走到头了,所以研究人员不得不研发新的解决办法—光学计算就是其中之一。

  在光学计算中,载送信息的不是电子,而是光子。光子的载送速度要快得多,达到了光速;不过,要控制光也困难得多。通信线路中的光缆沿线处的光学开关其制造技术取得了进展,这有助于光学计算的研究。出人意料的是,最重要的研究其目的却是,研制出介于多核芯片上传统处理器之间的光学互连器件。并行处理信息的处理器核心之间要来回传送大量数据,所以连接处理器核心的引线会成为瓶颈,而光学互连器件有望改善数据传送。惠普实验室的研究人员正在评估可将传送的信息量增加两个数量级的设计。

  其他机构组织正在研制光学互连器件来取代速度较慢的铜线,如今人们用铜线把处理器芯片与计算机里面的其他部件(如内存芯片和DVD驱动器)连起来。和加州大学圣巴巴拉分校的工程师们采用常规的半导体制造工艺,利用硅和磷酸铟研制出了光学“数据管道”。不过,纯粹的光学计算芯片的出现还需要在技术层面取得一些根本性突破。

  分子计算:用分子做成电路

  在分子计算中,代表1和0的是分子,而不是。当分子是生物分子时(如DNA),这类计算称为分子计算(参阅下文的“生物计算:能存活的芯片”)。为了区分,工程师可能会将非生物分子计算称为分子逻辑或分子电子学。

  典型的有三个端子(可以想象成字母Y):源极、栅极和漏极。对栅极(Y的下半部)施加电压后,就会引起电子在源极和漏极之间移动,形成1或0。从理论上来说,树枝状分子会引发信号以类似的方式移动。十年前,耶鲁大学和赖斯大学的研究人员利用苯作为一种构建材料,研制出了分子开关。

  分子可能很小,所以用分子做成的电路可能比用硅做成的电路小得多。不过,一个现实的难题是必须找到制造复杂电路的方法。研究人员们认为,自组装也许是一种解决办法。2009年10月,宾夕法尼亚大学的一个科研小组单单利用促使自组装的化学反应,就把锌和结晶硫化镉转变成金属-半导体超晶格电路。

  量子计算:表达出更多的信息

  用一个个原子、电子甚至光子做成的电路元件将是尺寸最小的元件。在这么小的尺寸范围内,元件相互之间的联系由量子力学(即解释原子行为的一套定律)管理。量子计算机可能拥有异常惊人的密度和速度,但实际制造量子计算机及管理随之出现的量子效应却困难重重。

  原子和电子具有能在不同状态下存在的特性,能够组成量子比特(Qubit)。研究处理量子比特的几种方法正在试验中。一种名为自旋电子(Spintronics)的方法使用电子,电子的磁矩会在两种旋转方向中选择其一。就好比一只球往一个方向或另一方向旋转(分别表示1或0)。不过,两个状态还能共存于一个电子中,形成一种独特的量子状态,名为0和1的叠加(Superposition)。在叠加状态下,一连串电子可以表示比一串只有普通比特状态的硅多得多的信息。加州大学圣巴巴拉分校的科学家们已通过用蚀刻到金刚石上的空腔来俘获电子,做成了许多不同的逻辑栅极。

  在马里兰大学和美国国家标准技术研究所研究的另一种方法中,一串离子悬浮在带电板之间,而激光可以快速转动每个离子的磁定向(量子比特)。第二种方法是检测离子发射出来的不同种类的光子,种类取决于离子的定向。

  除了具有叠加优点外,量子元件还能表示出更多的信息,如多个量子比特的信息状态可以结合起来,从而获得处理信息。

晶体管相关文章:晶体管工作原理


晶体管相关文章:晶体管原理


评论


相关推荐

技术专区

关闭