新闻中心

EEPW首页>测试测量>设计应用> 一种新型的高速铁路桥梁监测系统

一种新型的高速铁路桥梁监测系统

—— 功耗方面比传统监测系统降低了35%以上
作者: 时间:2010-12-23 来源:电子产品世界 收藏

  系统硬件电路

本文引用地址://m.amcfsurvey.com/article/115696.htm

搭载了一个强大的Marvell公司PXA271处理器芯片,并集成了德州仪器CC2420射频芯片。与以往无线传感器网路的平台相比,提供了更多存储资源,包括256kB的SRAM、32MB的SDRAM和32MB的Flash。Imote2从真正意义上打破了平台在计算能力和内存方面的局限性,可以在数字图像传输和工业震动监测等领域广泛应用。图2为Imote2的系统组成[4~5]。

  Imote2包含处理器PXA271,该处理器可工作在低电压(0.85V)和低频(13MHz)模式,可进行低功耗操作。PXA271是多芯片模块,即在一个封装内集成3个芯片:处理器、32MB FLASH以及32MB SDRAM。处理器提供多种I/O,能够灵活的支持不同种类的传感器、A/D、射频器等。处理器还包括多个定时器和一个时钟。另外,PXA271处理器板还包含了一个无线MMX协处理器。增加了30条媒体处理器指令,支持队列及视频操作,并兼容Intel MMX和SSE integer指令。

  Imote2接口板包含2个USB串口和1个JTAG接口,可通过高级接口连接到Imote2上。接口板可以通过mini–B USB接口连接到PC机上的USB口。JTAG接口是标准20针接口,兼容标准适配器。因此,可使用Marvell软件开发工具套件及类似工具,为Imote2的闪存进行软件开发、调试和重新编程。

  Imote2节点平台

  由图3可知,一个Imote2节点平台包括应变、加速度等各类传感器、ADS1256、电源管理单元和Imote2节点。它们被大量布散在桥梁关键监测区域,它们通过无线信道相连,形成一个多跳的自组织网络系统,利用Imote2强大的处理器对桥梁的挠度、应变等主要结构的受力状态进行监测,是整个系统的核心部分。

  ADS1256与电容传感器相连,Imote2分别与存储器、电源模块和ADS1256相连。电容传感器和ADS1256是由电源管理单元供电的。对于电容加速度传感器与ADS1256的连接,采用了单极输入方式进行通信,将多个传感器分别接于ADS1256的输入端。ADS1256通过采用四线制(时钟信号线SCLK、数据输入线DIN、数据输出线DOUT和偏片选线CS)SPI通信方式与Imote2连接进行通信。这里低噪声、高精度的24位模拟-数字转换器和SPI接口技术以及电容传感器的使用,使在数据采集过程中做到了精度高,测量范围大,灵敏度高,动态响应快,稳定性好等优点[6]。

  在铁路桥梁两端的无线传感器节点不需要强大的计算能力,但必须保持低功耗和以及足够的无线传输距离。一直以来测量多个数据并且保持低功耗和以及足够的传输距离是的两大软肋,但可借助Crossbow最新推出的另外一款节点平台,能够提供低功耗和远距离无线传输的双重优势,无需烦恼于如何取舍功率和作用距离。

工作在2.4GHz、支持IEEE 802.15.4/ZigBee协议,具有更广的作用范围,传输距离较以往产品提高三倍。在处理器和射频平台方面,XM2110基于ATmega1281处理芯片。ATmega1281是一款低功耗的处理器。在传感器板方面,Crossbow为IRIS提供多种传感器板和数据获取板,并且都能够通过标准51针扩展接口与其连接[7]。

  IRIS节点平台

  由图4可知,一个IRIS节点平台包括磁钢传感器,MDA300数据采集板,IRIS节点。传感器通过IRIS提供的MDA300数据采集板与IRIS连接,MDA300提供8个ADC通道、8个数字通道以及I2C接口用于外接各类传感器[8]。

  它位于铁路桥梁的两端,当有列车通过时,磁钢传感器就会自动采集和处理数据,处理完的数据由IRIS的射频模块进行无线传输,IRIS足够的无线传输距离可以将开始或停止数据采集的信号发送给的网关节点,最终控制分散在桥梁关键监测区域的Imote2节点平台的数据采集时间。



评论


作为英特尔下一代Tiger Lake-U平台的一部分,Xe架构新核显绝对是重大卖点。英特尔曾在上个月演示通过Tiger Lake核显运行战地5,在1080P分辨率和图形预设为高的情况下游戏大体能保持以30FPS的速度运行。

技术专区

关闭