新闻中心

EEPW首页>光电显示>设计应用> LED热管理:一个散热器足够吗?

LED热管理:一个散热器足够吗?

作者:James Patterson 美国国家半导体公司 高级应用工程师 时间:2011-04-27 来源:电子产品世界 收藏

  LED驱动器

本文引用地址://m.amcfsurvey.com/article/119027.htm

  这些LED仅仅是具有LED驱动器主控机制的动态系统的组成之一。高亮度LED驱动器通常是通过开关转换器支持其工作。转换器对系统进行调节以提供一个近似于恒定的LED光通量输出。驱动器可适应不断变化的动态情况,提供连续调节,保证系统电气稳定性。在最常见的LED驱动器中,需要对输出电流进行调节,因为它与输出通量有着密切的关系并易于做出调整。

  尽管电气稳定性是控制方案的根本,但热平衡是可控变量(LED电流)和不可控变量(环境)的函数。随着环境温度从25℃的室温增高时,LED的前向电压降低。因为电流被不断调整,因此功率降低,最终达到实现结点热平衡的目的。但最终环境温度的升高会导致结温超过LED的安全工作范围。此时,LED内的各种元件性能降低、恶化,最终导致热逸散和灾难性的LED故障。

  每个LED制造商都提供了对应环境温度变化的最大前向电流的特性曲线。如图2所示的Cree XRE系列曲线,该曲线标明了推荐的LED过温安全工作范围(SOA)。这个快速的参考设计资料提供了多重θJA图形。因为在数据表规定了θJS,而在运行良好的系统中可以忽略θSH,因此θHA是一个可控变量。对于给定的θHA,维持LED驱动电流在限定范围内,可防止LED在非安全状态下运行时会出现的热逸散和/或大幅的寿命衰减。

  从图2中不难看出大型器会扩大LED的适用范围。不过,在一些LED应用中,高昂的器成本及更大的器体积令人望而却步。对于此类应用,为了实现散热,需要良好的解决方案。

  比起针对每个规格设计一个大容差范围的热管理方案,设计师更愿意采用通用方案。这令LED驱动器的应用成为可能。由于驱动器会调节电流及功率,因此仅需对非安全运行状态进行检测,并令驱动器可以做出相应反应即可。

  考虑到制造商规定的前向电流额降,设计师现在能够依靠LED驱动器来提供有帮助的控制机构,从而对LED提供热保护。由于多数新的LED驱动器具有调光输入,因此几乎总有一个简单的方法来降低向LED的输出电流。鉴于此,可以设计一个电路来检测靠近LED的温度。如果系统有良好的热阻特点,那么LED的结点温度就能通过测量来内推。

  因此,LED驱动器可以按照如图3所示的需求来维持或降低调节电流。该图可以改变,并且基本上与制造商的数据表规范相吻合,也可将其绘制的更保守一些。无论用什么方式,都要保护LED免受电流过剩与过热的损害。特别是,可以依据所需减少对散热器要求,因为最差条件导致的热逸散能被去除。

可在许多方面应用。最常见和最简单的方法是使用一个NTC(负温度系数)热敏电阻测量LED附近的温度,如图4所示。NTC热敏电阻是一个随温度降低而增大,随温度增大而减小的电阻。如果电阻分压器设定值偏离基准电压,并且底部电阻器是一个热敏电阻,那么分电压将随温度增加而降低。假如将该电压钳制在低于基准电压的最大电压上,那么对于一些上升至最大温度断点(TBK)的温度范围来说,该电压就被固定为钳位电压。然而,对于高于TBK的温度而言,电压将下降,如图3所示。这个电压可以用来控制LED驱动器的模拟调光输入以实施基本

  LED调光时,折返图形会有不同。由于标称LED电流水平(ILED-NOM)被降低为调光电流水平(ILED-DIM),可对折返图加以修正以与新的温度断点(TBK-DIM)相适应。这扩大了LED使用的温度范围,如图3所示。可根据不同器件,分步或连续完成。

  另外一个变体是额外的最小LED电流(ILED-MIN)钳制,用来防止LED电流为零,同见图3。有许多应用中,终端用户出于安全原因,不想要成套的热折返。而使用这个特性,最小需求电流钳制可以允许系统不受安全运行范围约束。然而,就这一点而言,用户情愿以缩短使用寿命为代价来换取短期功能。

  路灯举例

  一个标准的路灯暴露于苛刻的环境条件中,且在整个使用寿命期间,由于各种原因,机械散热器的性能可能会降低。这种性能的降低极大地增加了总热阻θJA,而且最终将导致更高的LED结点温度从而缩减使用寿命。为满足市政设施关于使用寿命的要求,在路灯中热折返几乎总是必要的。

  图5所示为一个100W的路灯应用。前端交流-直流转换器获得一个120V交流电输入,然后将其转换为35V直流输入。第二阶段是一个LM3409恒流降压型LED驱动器,负载为6串并联,其中每串串联8只LED;每串驱动电流为700mA。

  LM3409用简单的磁滞控制方法调节电流。在主开关(Q1)接通期间,电感器电流斜升至由IADJ引脚设置的峰值电流阈值。一旦达到该阈值,Q1关断并且电感器电流斜降,直到程控关断计时器停止。关断计时器的程控是通过来自输出电压的RC实施的。这使得计时器与输出电压成正比,结果导致电感器电流纹波和随后的原本恒定的LED电流纹波超越运行范围。

  在IADJ上降低电压(从1.24V降至0V),平均LED电流的持续模拟调光能够很容易实施。假如IADJ的电压达到或高于1.24V,那么应调整LED的最大标称电流。当IADJ引脚电压降至1.24V时,电流开始调光,对执行热折返提供了一个极好的方法。

  该应用中的热折返电路比以前描述的更加基本化,仅利用一个IADJ附加的NTC热敏电阻。NTC热敏电阻的阻值将高于250kΩ(IADJ大于1.24V),直到温度达到要求的断点。然后作为NTC的一个功能,电阻降低,同时分别降低了IADJ的电压和LED电流。



评论


相关推荐

技术专区

关闭