新闻中心

EEPW首页>电源与新能源>设计应用> 能量收集应用无处不在

能量收集应用无处不在

作者:Tony Armstrong 时间:2012-05-17 来源:电子产品世界 收藏

  当然,由源所提供的能量取决于它处于操作状态的时间。因此,比较电源的主要衡量标准是功率密度,而不是能量密度。一般会遇到低的、可变的和不可预测的可用功率,因而通常采用了一种与能量收集器和一个辅助电能储存器相连的混合结构。收集器由于其无限的能量供应和功率不足而成为系统。辅助电能储存器 (一个电池或一个电容器) 可产生较高的功率,但储存的能量较少,它在需要的时候供电,其他情况下则定期从收集器接收电荷。所以,在没有可供收集功率的环境能量时,必须采用辅助电能储存器给 WSN 供电。当然,从系统设计人员的角度而言这将导致复杂程度的进一步增加,因为他们现在必须考虑这样一个问题“为了对缺乏环境能量源的情况下提供补偿,应在辅助储存器中存储多少能量?”究竟需要储存多少能量将取决于诸多因素,包括:

本文引用地址://m.amcfsurvey.com/article/132513.htm

  1. 缺乏环境能量源的时间长度
  2. WSN 的占空比 (即数据读取和传输操作必须具备的频率)
  3. 辅助储存器 (电容器、超级电容器或电池) 的大小和类型
  4. 是否可提供既能充当主能量源、同时又拥有充分剩余能量 (用于当其在某些特定时段内不可用时为辅助电能储存器充电) 的足够环境能量?

  最先进和现成有售的能量收集技术 (例如振动能量收集和室内光伏技术) 在典型工作条件下产生毫瓦量级的功率。尽管这么低的功率似乎用起来很受限,但是若干年来收集组件的工作可以说明,无论就能量供应还是就所提供的每能量单位的成本而言,这些技术大体上与长寿命的主电池类似。此外,采用能量收集的系统一般能在电能耗尽后再充电,而这一点主电池供电的系统是做不到的。

  正如已经讨论的那样,环境包括光、温差、振动波束、已发送的 RF 信号,或者其他任何能通过换能器产生电荷的。下面的表 2 说明了从不同能源可产生多少能量。

表 2:能源以及它们可产生多少能量

  要成功设计一款完全独立的无线系统,需要现成的节电型微控制器和换能器,并要求这些器件消耗最小和来自低能量环境的电能。幸运的是,低成本和低功率及微控制器已经上市两三年左右了,不过只是在最近,超低功率收发器才投入商用。然而,在这一系列环节中,处于落后的一直是能量收集器。现有的能量收集器模块实现方案 (如图 1 所示) 往往采用低性能和复杂的分立型结构,通常包括 30 个或更多的组件。此类设计转换效率低,静态电流高。这两个不足之处均导致最终系统的性能受损。低转换效率将增加系统上电所需的时间,反过来又延长了从获取一个读数至传输该数据的时间间隔。高静态电流则对能量收集源的输出能达到的最低值有所限制,因为它必须首先提供自己工作所需的电流,多出来的功率才能提供给输出。正是在能量收集器这个领域,凌力尔特公司最近推出的产品 LTC3109、LTC3588-1 和 LTC3105 使性能和简单性上提升到一个新水平。这些能量收集 IC 所带来的新性能水平是采用分立式方案完全无法实现的。因此,它们由于能够收集非常低的环境能量而成为了推动能量收集系统制造商成长的“催化剂”。凭借这种性能水平,再加上换能器、微控制器、传感器和收发器经济合算的价位,使其市场接受度得以提升。这也是此类系统在全球范围的众多应用中受到大量关注的原因之一。

一个现实世界的例子:“飞机健康状况监视”

  今天,大型机群的结构性疲劳是一个现实问题,因为如果忽视该问题,就可能导致灾难性后果。目前,飞机结构状况是通过多种检查方法来监视的,如通过改进的结构化分析和跟踪方法,通过采用评估结构完整性的创新理念 … 等等。这些方法有时又统称为“飞机健康状况监视”方法。在飞机健康状况监视过程中,采用了传感器、人工智能和先进的分析方法以实时进行连续的健康状况评估。

  声发射检测是定位和监视金属结构中产生裂缝的领先方法。这种方法可以方便地用来诊断合成型飞机结构的损坏。一个显然的要求是,以简单的“通过”、“未通过”形式指示结构完整性,或者立即采取维修行动。这种检测方法使用由压电芯片构成的扁平检测传感器和光传感器,压电芯片由聚合物薄膜密封。传感器牢固地安装到结构体表面,通过三角定位能够定位装载了传感器的结构体的声活动。然后用仪器捕捉传感器数据,并以适合于窄带存储和传送的形式用参数表示这些数据。

  因此,无线传感器模块常常嵌入到飞机的各种不同部分,例如机翼或机身,以进行结构分析,不过为这些传感器供电可能很复杂。因此,如果以无线方式供电或者甚至自助供电,那么这些传感器模块就可以更方便地使用,效率也更高。在飞机环境中,存在很多“免费”能源,可用来给这类传感器供电。两种显然和可以方便地利用的方法是热能收集和/或压电能收集。

  在典型的飞机发动机情况下,其温度可能在几百 ºC 到 1,000ºC 甚至 2,000ºC的范围内变化。尽管这种能量大多数都以机械能 (燃烧和发动机推力) 的形式损失了,但是仍然有一部分是纯粹以热量形式消耗的。既然席贝克效应是将热量转换成电功率的根本热力学现象,那么要考虑的主要方程是:

  P = ηQ

  其中 P 是电功率,Q 是热量,η 是效率。

  较大的热电发生器 (TEG) 使用更多热量 (Q),产生更多功率 (P)。类似地,使用数量为两倍的功率转换器自然产生两倍的功率,因为它们可以获取两倍的热量。较大的热电发生器通过串联更多的 P-N 节形成,不过,尽管这样可以在温度变化时产生更大的电压 (mV/dT),但是也增大了热电发生器的串联电阻。这种串联电阻的增大限制了可提供给负载的功率。因此,视应用需求的不同而有所不同,有时使用较小的并联热电发生器而不是使用较大的热电发生器会更好。不管选择哪一种热电发生器,都有很多厂商提供商用热电发生器产品。

  通过给一个组件施加压力,可以产生压电,而压电反过来又产生一个电位。压电效应是可逆的,展现正压电效应 (当加上压力时,产生一个电位) 的材料也展现反压电效应 (当加上一个电场时,产生压力和/或应力)。

  为了优化压电换能器,需要确定压电源的振动频率和位移特性。一旦确定了这些电平,压电元件制造商就能够设计一款压电元件,以机械的方式将其调谐至特定的振动频率,并确定其尺寸以提供所需的功率量。压电材料中的振动将触发正压电效应,从而导致电荷积聚在器件的输出电容上。积累的电荷通常相当少,因此 AC 开路电压很高,在很多情况下处于 200V 量级。既然每次挠曲产生的电荷量相对较少,那么有必要对这个 AC 信号进行全波整流,并在一个输入电容器上逐周期积累电荷。

超级电容器相关文章:超级电容器原理


负离子发生器相关文章:负离子发生器原理
电荷放大器相关文章:电荷放大器原理
电流变送器相关文章:电流变送器原理
离子色谱仪相关文章:离子色谱仪原理


评论


相关推荐

技术专区

关闭