新闻中心

EEPW首页>嵌入式系统>设计应用> 基于高分辨率乘法DAC的交流信号处理简介

基于高分辨率乘法DAC的交流信号处理简介

作者: 时间:2012-08-31 来源:网络 收藏

本文引用地址: //m.amcfsurvey.com/article/148469.htm

稳定性问题
图 2 和图 3 中显示的一个重要元件是补偿电容(C1)。电阻梯的输出电容加上放大器的输入电容及任何杂散电容,会在开环响应中产生极点——这会在环路闭合时引起振铃或不稳定。为了补偿这一点,通常与的内部RFB并联连接一个外部反馈电容C1。如果C1值过小,会在输出端产生过冲或振铃,而值过大则会过分降低系统带宽。的内部输出电容随码而变化,因此C1很难确定精确值。根据以下等式可计算出其最佳近似值:

其中GBW是运算放大器的最小信号单位增益带宽乘积,CO是的输出电容。

信号调理的关键 M-DAC规格
带宽:增益为–3 dB时的基准电压输入频率。对于给定器件,它与幅度和选择的补偿电容呈函数关系。图 6 所示为可以使最高12 MHz的信号相乘的电流输出DAC AD5544、AD5554或AD545x的带宽坐标图。配套的低功耗运算放大器 AD8038具备350 MHz带宽, 可确保该运算放大器在此范围内不会引起明显的动态误差。

图 6.带宽

模拟总谐波失真(THD):乘法波形信号中谐波成分的数学表达。它近似等于DAC输出的前四个谐波(V2, V3, V4,和V5)之均方根和与基波值V1(如图7所示)的对数比,计算公式如下:


图 7. 谐波失真分量

乘法馈通误差:DAC的数字输入全部为0时,由基准电压输入至DAC输出的容性馈通所致的误差。理想情况下,一直到最低有效位DB0,每下降一位,增益便降低6 dB(图 8)。不过,对于较低的位,容性馈通影响增益的频率更高。这一点从较低位尾部上翘的平坦曲线可以看出。例如,14位DAC的DB2处,所有频率的理想增益应为–72 dB,但由于馈通效应,1MHz时的实际增益为–66 dB。

乘法馈通误差 www.elecfans.com

图 8. 乘法馈通误差

选择正确的运算放大器
乘法DAC电路性能非常依赖于所选运算放大器的能力,从而在电阻梯输出端保持零电压,并实现电流电压转换。要实现最佳的直流精度,重要的是要选择具有低失调电压和偏置电流的运算放大器,以保持误差与DAC的相当。详细的运算放大器技术规格参见器件数据手册。

对于基准电压输入为较高速信号的应用,需要一个带宽较宽、压摆率较高的运算放大器,以免削弱信号。一个运算放大器电路的增益-带宽受反馈网络的阻抗水平和增益配置限制。要确定所需的GBW,一种可行的方式是选择–3 dB带宽(10 倍于基准信号频率)的运算放大器。

必须考虑运算放大器的压摆率规格,以限制高频大信号的失真。对于AD54xx和AD55xx系列,压摆率为100 V/µs的运算放大器一般就够了。

表 1 列出了可供乘法应用选择的运算放大器。

表 1. 适用的 ADI 公司高速运算放大器

产品型号
电源电压
(V)
BW (–3-dB)
(MHz)
压摆率
(V/µs)
最大VOS
(µV)
最大IB
(nA)
封装
AD8065
5 至 24
145
180
1500
0.006
SOIC-8, SOT-23-5
AD8066
5 至 24
145
180
1500
0.006
SOIC-8, MSOP-8
AD8021
5 至 24
490
120
1000
10,500
SOIC-8, MSOP-8
AD8038
3 至 12
350
425
3000
750
SOIC-8, SC70-5
ADA4899
5 至 12
600
310
35
100
LFCSP-8, SOIC-8
AD8057
3 至 12
325
1000
5000
500
SOT-23-5, SOIC-8
AD8058
3 至 12
325
850
5000
500
SOIC-8, MSOP-8
AD8061
2.7 至 8
320
650
6000
350
SOT-23-5, SOIC-8
AD8062
2.7 至 8
320
650
6000
350
SOIC-8, MSOP-8
AD9631
±3 至 ±6
320
1300
10,000
7000
SOIC-8, PDIP-8

结论
自首款CMOS M-DAC问世以来的近40年间,相关器件不断更新换代,许多新的功能特性层出不穷,性能持续提升,成本和尺寸则大幅缩减。我们的高、14位/16位电流输出DAC产品系列AD55xx的最新性能改进


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭