新闻中心

EEPW首页>嵌入式系统>设计应用> 浅谈让微控制器性能发挥极限的方法

浅谈让微控制器性能发挥极限的方法

作者: 时间:2012-06-05 来源:网络 收藏

假设一个系统只有一个中断,并在50个周期内完成。这样一个中断的延时相应地在50个周期左右。要注意的是,即使最简单的中断,微也需要约50个周期的时间来保存有限寄存器数目的环境信息,而且还需访问外设、保存数据、存储环境信息及清除管线。

然而,在固定性和延时方面,开发人员遇到的大多数问题并非处理单个中断这么简单,而是当众多中断同时发生时,应如何在即时满足所有要求。

当更多的中断出现时,优先权较低之中断的延时随固定性的下降而增加。一个50周期的任务可能多次被中断,并最终需要数百乃至数千个周期来完成。

固定性直接影响到响应性、可靠性和精度。当开发人员确切知道延时是50或500个周期,便可以在处理时可将之考虑在内。不过,如果延时介于50到500个周期之间,即便是最优秀的开发人员,所能做的也不过是假设一个典型延时(如200个周期)数值,然后把所有的偏离视为误差。

通过DMA和事件系统来减少同时发生的中断(即便是低频中断),可以大大提高系统的固定性并减小延时,而更高的固定性还有助于精度等其它重要因素的提升。

如何获得更高的精度

下面以一个电源管理任务在驱动电机等大负载时实现交流电源效率的最大化为例,来说明固定性如何影响精度。因为大部分可用能量都在电压处于峰值并与电流同相时供应,所以这时系统的电流消耗量应该最大。反之,电压越接近零(即过零点),可用电能就越少,而效率也越低。

比较器一般用于过零检测,当电压下降至设定阈值以下或上升至阈值以上时,比较器便会接通。对两个或多个数据项进行比较,以确定它们是否相等,或确定它们之间的大小关系及排列顺序称为比较。 能够实现这种比较功能的电路或装置称为比较器。 比较器是将一个模拟电压信号与一个基准电压相比较的电路。比较器的两路输 入为模拟信号,输出则为二进制信号,当输入电压的差值增大或减小时,其输出保持恒定。因此,也可以将其当作一个1位模/数转换器(ADC)。运算放大器在不加负反馈时从原理上讲可以用作比较器,但由于运算放大器的开环增益非常高,它只能处理输入差分电压非常小的信号。而且,一般情况下,运算放大器的延迟时间较长,无法满足实际需求。比较器经过调节可以提供极小的时间延迟,但其频响特性会受到一定限制。为避免输出振荡,许多比较器还带有内部滞回电路。比较器的阈值是固定的,有的只有一个阈值,有的具有两个阈值。相对于使用比较器触发中断并驱使CPU开关电容的情况,事件系统可以把比较器事件直接发送到定时器/计数器输出,无需CPU干预即可控制开关。

低优先权任务(如PFC)的中断延时可能需要数千个周期,而具体延时取决于有多少个优先权更高的中断同时发生。延时较大意味着电容会晚于最佳时刻开关,这会显着降低总体效率。

当把上面的数字跟微的时钟频率一同考虑时,便会发现如果微控制器的时钟频率为32MHz,一个双周期延时所引入的误差其实微不足道(2/32M);而数千个周期的延时则可能大大影响高频任务(它们本身也需要每隔数千周期才会被处理)的精度。值得注意的是,若中断是由优先权较高的任务发出的,该延时可能降至50个周期左右。

更高的精度在产生信号时也起着关键的作用,这里所指的并非单纯的信号采样。以创建100kHz波形为例,利用中断,波形的精度将受相对于信号速率的可变延时的影响,并根据任务切换和已堆积的其它中断数量而变得稍慢或稍快。注意,当波形平均而言准确时,在许多情况下,影响只来自是两个连续样本之间的相对差异。

高频信号处理

在大量嵌入式应用中,信号产生成为了一个越来越普遍的任务。信号用于产生声音、管理电压转换调节器、控制工业应用中的致动器,以及实现无数其它功能。

对于发生频率较高的事件而言,CPU负荷是一大考虑因素。以一个流量计多轴定位系统或一个拥有每秒采集200万个样本采样速度的快速精确测量能力的仪表系统为例,单是采集样本,每秒便消耗了数十到数亿个周期。而若采用一个事件系统和DMA控制器,所有这些周期都可从CPU卸载,而且这些样本还会被实际处理,而不是简单地缓存。即使只是一个仅需要50个周期来完成、需要任务切换支出的简单任务,也能够从CPU卸载一亿个周期。

对于频率较高的任务,事件系统和DMA控制器还能够实现以下事项:

精确的时间戳((time-stamping):为采样加上时间戳让开发人员能够使信号更好地与外部事件同步。在双周期延时的情况下,时间戳远比标注中断更精确,并可省去后者达数千个周期的延时。

过度采样:提高传感器分辨率的其中一个是过度采样。譬如,把计数器除以16,可以使采样样本数目增加到16倍,从而提高传感器的总体精度。由于CPU没有直接参与样本的采集和存储,故有可能出现过度采样,而无太多惩罚。

动态频率:某些应用只在某些时间或特定工作条件下才需要较高的感测精度。例如,水表在水流速度快速变化时,采样频率会较高;而在流量被切断或流速稳定时,又回复正常频率。

降低堆栈大小:减少并行中断数目的另一个好处是能够维持较小的堆栈。由于每一个中断都必须通过在堆栈中增加数十个寄存器来执行环境信息保存,因此消除了好几个环境保存层,显着减低所需堆栈的大小,这将让应用能够使用更少的RAM存储器。

抗扩展能力:鉴于不同微控制器支持的外设数目不同,同一应用的中断数目可能随产品价格而各有不同。即便使用同一个微控制器系列,支持更多功能的较高端系统会有更多的中断,降低了总体固定性。因此,把设计移植到集成度更高的微控制器,可能会影响信号延时乃至采样和输出的精度。

实现简易软件改变:由于事件处理减少了CPU干预,所以系统可在不会影响实时响应的情况下实现软件改变。即便需要更多的CPU时间来处理额外的功能,事件处理和响应时间也将完全相同。

自主控制

一个嵌入式微控制器可能要执行无数个任务来降低功耗、提高精度以及改善用户体验,而许多这类任务只不过是监控或是检测单个数值。例如电池监控器进行监测,直至电压降至某个数值以下。然后,系统就触发关断操作,在仍有足够电量时保存应用数据。

提升用户体验常常是许多消费类产品的主要卖点。例如,事件系统能够加快系统对唤醒按键或外设输入的响应速度,在两个周期内就可以做出反应。如果与采用中断的响应性比较,由于中断需要系统返回到工作模式,因此就降低了能效。



评论


相关推荐

技术专区

关闭