新闻中心

EEPW首页>嵌入式系统>设计应用> 基于ARM7智能拆焊、回流焊台控制系统的设计

基于ARM7智能拆焊、回流焊台控制系统的设计

作者: 时间:2011-01-10 来源:网络 收藏


本设计的温度采集电路如图2所示,在P6口的1、3引脚接热电偶传感器的正端,2、4引脚接热电偶传感器的负端。热电偶采集到信号后经C00、C10(高频滤波电容)将高频杂波滤除,再经27L2(低频小信号放大器)将信号放大,其中R64与R63的和与R65的比值即为U3B的放大倍数,同理,R60与 R62的和与R61的比值为U3A的放大倍数。放大后再经C01和C11将高频杂波滤除,最后该信号被传到7,经其内部AD转换器将模拟电压信号转换成处理器可识别的数字信号。当热电偶传感器探头部分的温度发生变化时,热电偶传感器两端的电压也按一定比例对应发生变化,然后该电压信号经27L2放大,再经内部AD将模拟量转换成数字量,处理器得到数字量后便知道现在的温度。
当然要想精确测温仅有热电偶测温模块是不够的。因为热电偶传感器有一个缺陷,它测的温度是探头与冷端之间的温度差,也就是说若仅用上述电路测温,则只有在冷端温度为零点的情况下测得的温度才是最精确的,冷端的温度与零点的温差越大,测得的温度数据越不精确。而本设计中焊台加热的同时,热电偶冷端温度会变化,从而造成了测温不准确。为了解决上述问题,特别增加了DSl8B20作为补偿,在工业上称为补正系数修正法。应用的公式为:
T=T1+kT2
式中T为实际温度,T1为DSl8B20;测得的温度,T2为热电偶传感器模块测得的温度,k为补正系数,这里取0.82。
2.3 ARM最小系统
本设计采甩ARM7作为主控芯片,主要因其性价比高、资源丰富、工作稳定可靠。它带有32kB的片内Flash程序存储器和8kB的片内静态 RAM;128位宽度接口/加速器可实现高达70MHz工作频率;1O位A/D转换器提供8路输入;2个32位定时计数器和2个16位定时计数器;多达 32个通用IO口,可承受5V电压:多个串行接口,包括2个UART、2个I2C总线、SPI和具有缓冲作用和数据长度可变功能的SSP;多达13个边沿、电平触发的外部中断管脚;一个可编程的片内PLL可实现最大为70MHz的CPU操作频率等等。
c.JPG

在图3ARM最小系统中,11.0592M的晶振和两个20pF电容为系统提供稳定的工作频率,然后再经ARM内部锁相环倍频使其工作频率最大可达 70MHz。图中的U1为CAT1052,它为系统提供稳定的复位电路,同时为系统提供了256字节的可读写的E2PROM,使系统存储掉电不丢失数据空间。
2.4 执行电路
该设计的执行电路如图4所示。其中PL端口接控制指示灯,PS1为AC220接口,PS2为灯体接口,PS3为电热盘接口,网络标号KONG1和KON- G2接ARM的两个控制引脚。当ARM测到当前温度低于温度曲线上的对应温度(即当前需要加热到的温度)时ARM处理器便让对应的控制端口置零,此时对应的光电耦合器(US1或US2)的发射端工作,使接收端导通,这时电源电压经触发二极管(DS1或DS2)和300 Ω电阻后到达双向晶闸管(Q-S1或QS2)的触发极使其导通,这样电热盘或灯头便开始加热工作。类似的道理,当ARM的控制端给出低电平时,对应的可控硅截止,灯头或电热盘停止加热。

d.JPG


关键词:ARM

评论


相关推荐

技术专区

关闭