新闻中心

EEPW首页>手机与无线通信>设计应用> STM32的RFID手持终端硬件设计

STM32的RFID手持终端硬件设计

作者: 时间:2012-05-03 来源:网络 收藏

2
2.1 主控芯片及其外围接口的
主控芯片采用了ST公司生产的基于ARM Cortex-M3内核的嵌入式处理器F103VET6。该处理器的工作频率为72MHz,支持多种通信总线,其中包括2个I2C总线接口、5个USART串行接口、3个SPI总线接口、CAN总线和USB总线。同时,该处理器还具有80个通用I/O接口、16位定时器、A/D转换器、实时时钟等功能。该处理器可以完全满足本需求。
为了满足移动使用的需求,采用了7.4 V的锂电池进行供电。采用了AMSIII7-5.0芯片提供5 V电压,AMSIII7-3.3芯片提供3.3 V电压。AMSIII7系列芯片可以输出1A的电流,输入电压调节率小于0.2%,负载调节率小于0.4%,输出电压稳定。为了抗干扰,F103VET6上的每个电源引脚都并联了去耦合的0.1μF电容,这些电容应该尽可能地靠近电源/地引脚。
F103VET6需要两个外部时钟源,高速外部时钟源(HSE)和低速外部时钟源(LSE)。HSE晶振的频率是8 MHz,作用是产生精确的主时钟,用于驱动系统时钟。LSE晶振的频率是32.768kHz,作用是为片内实时时钟提供一个低功耗且高精度的时钟源,用于时钟或日历等需要计时的场合。晶振和负载电容需要尽可能地靠近芯片的引脚,以减小输出失真和启动稳定时间。负载电容值必须根据选定的品振进行调节。当选择负载电容值时,PCB板和芯片引脚的电容值也必须被计算进去。这里采用了20pF的电容作为HSE的负载电容,10 pF的电容作为LSE的负载电容。在设计PCB时,振荡电路旁边要避免有高频信号经过,走线长度越短越好。
STM32F103VET6采用4线SPI总线方式与读卡芯片CLRC632和SD卡进行通信,并与触摸屏控制器连接,完成触摸屏的压力感应;采用I2C总线方式与外部EEPROM AT24C64进行通信;采用16位的I/O接口与TFTLCD模块连接,实现系统显示输出;采用16位的I/O接口与键盘连接,最多可支持64个按键输入;采用USART串行接口实现程序的烧写和渊试,并与无线通信模块连接,实现与上位机的无线通信;采用USB总线实现与上位机的高速有线通信。
2.2 射频读卡芯片及天线网络的设计
本RFID手持终端使用NXP公司生产的CLRC632作为射频读卡芯片。该芯片是一种应用于13.56 MHz的非接触式射频标签的芯片,支持符合ISO/IEC14443和ISO/IEC15693标准的射频标签。该芯片支持10 cm的最大操作距离,与NXP公司的其他射频读卡芯片MFRC500、MFRC530、MF RC531、SLRC400引脚兼容。该芯片可以用8位并行接口或SPI总线方式与微控制器进行通信。CLRC632电路原理图如图2所示。

本文引用地址://m.amcfsurvey.com/article/155039.htm

b.JPG


本文中的CLRC632使用SPI方式与主控芯片STM32F103VET6进行通信。CLRC632提供了与SPI总线标准兼容的接口,在SPI通信过程中作为从设备。SPI总线时钟信号SCK由微控制器产生,主控芯片使用MOSI数据线向CLRC632发送控制信息,CLRC632使用MISO数据线向主控芯片发送数据。



评论


相关推荐

技术专区

关闭