新闻中心

EEPW首页>手机与无线通信>设计应用> 超高频RFID射频接口电路设计

超高频RFID射频接口电路设计

作者: 时间:2011-08-25 来源:网络 收藏
2.2 稳压

本文引用地址://m.amcfsurvey.com/article/155850.htm

  在4W等效发射功率下,距读写器20cm处,采用增益1.5dBi的接收天线,标签接收到的最大功率达到95.5mW,超过标签在4m处接收到最大功率的400倍。为了保证标签在近场和远场都能够可靠工作,需要有效的稳压电路使得标签在近场能够保持电压不超过正常工作电压范围。

  通常的并联式稳压结构如图2所示。当Vout大于稳压电路开启阈值时,稳压电路内的泻流管Mp开启,从泻流管泻放电流,使电压降低。

  2.3 解调

  本文提出的是针对满足ANSNCITS256??1999标签协议的标签芯片设计的。根据ANSNCITS256??1999标签协议规范,读写器到标签的信号为OnOffKey(OOK)调制信号。

  因此,解调电路可采用二极管包络检波解调实现。

  3 设计实现

  3.1 电源恢复电路

  根据设计指标,要在915MHz信号输入幅度200mV,负载电流20A时获得大于2V的直流电压。则根据(3)式,可得N>5。因此,所需倍压电路最低级数为12级。考虑到MOS管导通压降的损失和寄生效应带来的损失,电源恢复电路采用16级的倍压电路结构,利用零阈值NMOS管实现。倍压式电源恢复电路的末端最后一个电容为储能电容,取200pF。

  3.2 稳压电路

  根据设计协议要求,输入信号为OOK信号在OOK信号的关断时刻,由于图2中泻流管Mp无法瞬间关闭,于是继续从储能电容Cs上抽取电流,从而导致电源电压Vout出现较大下脉冲凹陷。为解决该问题,将并联稳压电路改进,如图3所示。泻流管Mo1和Mo2的电流抽取点从Vout端移至节点p。这样,当泻流管开启,OOK信号的关断时刻到来时,由于二极管连接的MOS管M3、M4的反向截止作用,储能电容Cs上的电荷不会从泻流管上被抽取走,从而避免了泻流管造成的电源电压下脉冲凹陷的问题。稳压电路稳压值设计在2.4V。

  3.3 解调电路

  解调电路如图4所示。M1~M4为4级倍压单元,起到检波二极管的作用。由于并联稳压电路的泻流管无法瞬间关断,因此,在OOK信号关断时刻,泻流管抽取电容C4上的电荷。电容C4取值较小,因此,p1点电平迅速下降,形成较大的下脉冲凹陷,经过后级的整形电路,输出标准的解调波形。

  3.4 流片验证

  该射频前端模块作为超长距离无源射频标签芯片的一部分,在UMC0.18m混合信号工艺下设计实现,并流片验证。芯片照片如图5所示。

倍压整流电路相关文章:倍压整流电路原理




评论


相关推荐

技术专区

关闭