新闻中心

EEPW首页>手机与无线通信>设计应用> 数字接收机中高性能ADC和射频器件的动态性能要求

数字接收机中高性能ADC和射频器件的动态性能要求

作者: 时间:2011-07-06 来源:网络 收藏

不同结构的杂散考虑

如果需要进一步节省元件数、线路板空间,降低功耗及成本,可采用下面给出的一次变频结构。假定设计的cdma2000工作在PCS频段,采样速率为61.44Msps,合成器基准频率为30.72MHz,第一中频的中心选在6阶Nyquist频段169MHz,带宽约为1.24MHz。对于DDS结构,采用相同的169MHz第一中频,第二中频的中心频率在46.08MHz的2阶Nyquist频段。

表3. 用于SDC和DDC架构的假设杂散特性

SDC DDC Parameter Value
x x Receive band 1904.3800 to 1905.6200MHz
x x Clock Frequency 61.44000MHz
x x Max clock harmonic 30
x x Synthesizer ref freq 30.7200MHz
x x Max synthesizer harmonic 40
x x First injection LS 1736.0000MHz
x x Max 1st LO harmonic 5
x x Receive image band 1566.3800 to 1567.6200MHz
x x First IF band 168.3800 to 169.6200MHz
x Second injection LS 122.9200MHz
x Max 2nd LO harmonic 5
x 1st IF image band 76.2200 to 77.4600MHz
x Second IF band 45.4600 to 46.7000MHz

表3列出了采用单载波、一次下变频(SDC)和两次下频(DDC)结构时,在PCS频段上端附近的RF载波杂散搜索假定条件。对于SDC结构来说,杂散搜索可在RF接收频段、接收镜像频段、IF频段及IF镜像频段发现134个谐波成份,这些杂散信号大多数阶数较高,不会降低接收。对于DDC结构来说,杂散搜索会找出2400多个谐波成,这比SDC结构下找出的18倍还多,这些谐波分布在RF接收频段、接收镜像频段、第一级IF频段、第一级IF镜像频段、第二级IF频段和第二级IF镜像频段。对于源自高阶时钟谐波和合成器基准频率的杂散信号,可以通过在设计时仔细考虑电路板的布局或增加滤波来抑制,但是,对大量的阶数较低的杂散成份的抑制就比较困难。

Maxim的IF放大器:MAX2027 MAX2055

Maxim也提供每级增量为1dB的数控增益、高IF放大器。MAX2027就是一种数控增益放大器(DVGA),采用单端输入/单端输出方式,可工作在50MHz至400MHz频率范围内,其最大增益时的噪声系数只有5dB。MAX2055则是单端输入/差分输出的DVGA,可在30MHz至300MHz频率范围内驱动高。在MAX2055的差分输出和差分输入之间可以采用一个升压变压器,变压器提供差分驱动,有利于输出信号之间的平衡。这两个DVGA工作在5V偏置,整个增益设置范围内具有+40dBm的OIP3。更详细的内容可参考Maxim网站上(www.maxim-ic.com.cn)的相关资料。

Maxim的高线性混频器:MAX9993 MAX9982

在接收电路中,混频器往往承受对性能更加严格的较大的输入信号。理想状态下,混频器输出信号的幅值和相位与输入信号的幅值和相位成正比,而且这种比例关系与LO信号无关。根据这一假设,混频器的幅度响应与RF输入呈线性关系,且与LO输入信号无关。

然而,混频器的非线性会产生一些不希望的混频信号,称之为杂散响应,这些杂散信号是由到达混频器RF端口、并不希望出现的信号产生的IF频段的响应。无用的杂散信号将干扰有用的RF信号的工作,混频器的IF频率可由下式给出:

fIF = ± mfRF ± nfLO这里,IF、RF和LO分别是各自端口的信号频率,m和n是将RF和LO信号混频后的谐波阶数。

集成(或有源)平衡混频器(比如Maxim的MAX9993和MAX9982),由于其性能优于无源混频方案而备受关注。当m或n为偶数时,平衡式混频器能够抑制一定的杂散响应,2次谐波性能更加优异。理想的双平衡混频器可以抑制m或n (或两者)为偶数的所有响应。在双平衡混频器中,IF、RF和LO端口之间都是相互隔离的。采用设计合理的非平衡变压器,混频器可以在IF、RF和LO频带交迭。MAX9993和MAX9982特点包括:低噪声系数,内含LO缓冲器,低LO驱动,允许两路LO输入的LO开关,极好的LO噪声特性等,此外,在RF和LO端口还集成有RF非平衡变压器。

Maxim的这些混频器内都嵌有LO噪声性能极好的LO缓冲器,降低了对LO电源的。通常LO噪声与电平较高的输入阻塞信号相混合会降低接收灵敏度。MAX9993和MAX9982内含低噪声LO缓冲器,可在出现阻塞时减轻对接收灵敏度的影响。例如,假设VCO输入信号的边带噪声是-145dBc/Hz,MAX9993的LO噪声特性的典型值是-164dBc/Hz,这样复合边带噪声就只下降了0.05dBc/Hz到-144.95dBc/Hz。采用这种方法,用户不仅为混频器提供一个电平较低的LO信号,还能确保的混频特性不会因MAX9993内置LO缓冲器的性能而降低。

此外,还有一种棘手的2阶杂散响应,也称为半中频(1/2 IF)杂散响应,对于低端注入,混频器阶数为:m = 2、n = -2;对于高端注入,混频器阶数为:m = -2、n = 2。低端注入时,引起半中频寄生响应的输入频率比希望的RF频率低fIF/2 (图4)。所希望的RF频率为1909MHz与1740MHz的LO频率进行混频,得到的IF频率为169MHz。虽然,CDMA的RF和IF载波频宽为1.24MHz,但在这里表示成一个频率为中心载频的单频信号。在这个例子中, 1824.5MHz频率的无用信号造成了169MHz的半中频杂散成份:

验证:
2 x fHalf-IF - 2 x fLO =
2 x (fRF - fIF/2) - 2 x (fRF - fIF) =
2 x (fRF - 2 x fIF/2) - 2 x fRF + 2 x fIF = fIF

由此可得到:
2 x 1824.5MHz - 2 x 1740MHz = 169MHz

图4. 有用fRF, fLO, fIF与无用fHalf-IF频率的位置
图4. 有用fRF, fLO, fIF与无用fHalf-IF频率的位置

抑制总量(也称为2x2杂散响应)可根据混频器的第二截点IP2来预测,图5给出了2x2 IMR或杂散值(来自Maxim的MAX9993数据资料)。注意:图中信号电平是用输入IP2 (IIP2)性能计算的混频器输入电平。

具体的计算公式如下:

IIP2 = 2 x IMR + PSPUR = IMR + PRF
= 2 x 70dBc + (-75dBm) = 70dBc + (-5dBm)
= +65dBm

由于Maxim的MAX9982 900MHz有源滤波器提供的典型杂散响应2RF - 2LO为65dBc,因此,其IIP2的计算方法如下:

IIP2 = 2 x IMR + PSPUR = IMR + PRF
= 2 x 65dBc + (-70dBm) = 65dBc + (-5dBm)
= +60dBm

图5. 计算混频器输入信号的第二截点,IIP2
图5. 计算混频器输入信号的第二截点,IIP2

RF通道的镜频抑制紧靠在混频器的前端,用于衰减所有的放大器谐波,而LO通路的噪声滤波器则用于衰减LO注入引起的谐波。电平较高的输入信号会在设备的输入或输出端引起失真或交调,其数值可以通过计算截点得到。 当混频器LO功率为固定值时,其截点或失真成份的阶数仅取决于RF倍频,而与LO的倍频无关,只需考虑RF信号的变化。这里说的阶数代表失真随输入电平上升而增加的速度。

在接收器增益不高时,Maxim的15位MAX1418具有极佳的噪声性能,因而可以用最小的AGC承受较大的阻塞电平或干扰电平。MAX1211 ADC系列产品适合于一次变频接收结构,其第一IF输入频率可达400MHz。另外,Maxim的MAX9993和MAX9982混频器可提供需要的线性度,同时噪声系数低,功率增益较高,因而可在设计过程中省去无源滤波器。MAX2027和MAX2055 DVGA在整个增益可调范围内的OIP3典型值约为+40dBm。由这些元件组成的接收器能够将低成本解决方案的性能提高一个等级。

1. 被测电路或系统的输出截止点是输入截止点与增益(以dB为电位)之和。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭