新闻中心

EEPW首页>手机与无线通信>设计应用> 超高频RFID读写器设计

超高频RFID读写器设计

作者: 时间:2011-02-03 来源:网络 收藏



3 读写器软件设计
3.1 数字基带处理模块

数字基带处理模块是整个软件设计的核心,它包括编解码、数据分析、防碰撞等部分,数字基带处理部分基本框图如图5所示。
3.2 读写器防碰撞流程
数字基带处理部分中,防碰撞部分是重中之重,也是整个读写器设计的关键部分。此设计中采用随机槽时隙仲裁防碰撞算法,解决了读写器在多标签环境下无法识别标签的问题,图6为读写器防碰撞大体流程。
3.3 读写器PIE编码设计
PIE(Pulse interval encoding)编码,即脉冲间隔编码,通过定义脉冲下降沿之间的不同时间宽度来表示数据。在标准中定义一个名称为“Tari”的时间间隔,也成为基准时间间隔,该时间段为相邻两个脉冲下降沿的时间宽度,持续时间为25μs。此设计中数据0和1的PIE编码与“Tari”时间按段的关系如表3所示。设计中使用定时器进行较精确的PIE编码。
PIE编码过程:首先设置编码逻辑,即定时器中的值大于等于T时输出为1,小于T时为输出0,然后等待编码信号来临。在编码信号来临后,从FIFO中取数据,如果为0,则设置定时器值为2T,时钟每来一次做自减运算;数据为1时则设置定时器中的值为4T,时钟每来一次做自减运算。
3.4 读写器解码设计
FMO(Bi-Phase Space)解码,即双相间隔解码,工作原理是在一个位窗内采用电平变化来表示逻辑。如果电平只从位窗的起始处翻转,则表示逻辑“1”,如果电平除了在位窗的起始处翻转,还在位窗中间翻转则表示逻辑“0”,如图7所示。一个位窗的持续时间是25μs。


FMO解码大体过程:首先读写器同时对I和Q两路信号进行采样,利用状态机检测返回帧头的正确性,读写器根据帧头的正确性来决定对I或Q路信号进行解码。针对FMO编码的特点可知,FMO每个数据单元的起始处发生翻转,由此可以根据起始处的上升沿或下降沿以及位窗中的采样点来判断出此位窗所表示的数据。设定一个位窗时间长度为T,一种情况是位窗起始处为下降沿,在该位窗3/4T处采样,采样为1则位窗表示数据“0”,采样为0则位窗表示数据“1”;另一种情况是位窗起始处为上升沿,在该位窗3/4T处采样,采样为1则位窗表示数据“1”,采样为0则位窗表示数据“0”。

4 结束语
本文中设计主芯片采用LPC2103与Si4031,硬件电路简单易于实现;基于ISO/IEC 18000-6C,利用防碰撞算法设计实现了UHF频段读写器在多标签环境下顺利与标签进行通信,增强了读写器的读写性能;最后通过简单分析,介绍了PIE编码和FMO解码的过程。


上一页 1 2 3 下一页

关键词:RFID

评论


相关推荐

技术专区

关闭