关 闭

新闻中心

EEPW首页>工控自动化>设计应用> 微波注入实验用高隔离度双工器的研究

微波注入实验用高隔离度双工器的研究

作者: 时间:2012-06-08 来源:网络 收藏

不同近似特性的滤波器在通频带内和通频带外的幅度频响曲线的起伏性,过渡频带的下降速度,通频带内相位频率特性等有很大差异,设计中首先要做的就是根据使用条件选择滤波器的形式,即滤波器的近似特性,然后完成设计。为了实现好的阻带衰减特性和平坦的通带波纹,本文采用Chebyshev型滤波器来设计。Chebyshev低通原型滤波器的衰减特性,其数学表达式为:
c.jpg
式中:d.jpg是通带内衰减最大值。这种特性滤波器同样可以用图2梯形电路来实现。上式中n就是该梯形电路的电抗元件数目。若n为偶数,则响应内LA=0的频率有n/2个;若n为奇数,则LA=0的频率有(n+1)/2个。对于两端都接电阻的双终端Chebyshev低通原型滤波器,设其通带波纹为LAr,g0=1,ω1’=1(归一化),则其他元件数值可用下式计算:
e.jpg
高、低阻抗线低通滤波器首先选定滤波器中的高、低阻抗值,设计出各高、低阻抗线中心导带宽度,在给定高、低阻抗值和两接地板的间距以及中心导带的厚度后,查表计算出各线段的宽度;根据滤波器实际元件数值和不连续阶梯的边缘电容值,可以计算出各高、低阻抗线的长度。最后修正两端阻抗的长度,以补偿它们与50 Ω传输线间的不连续性。带通滤波器可以由图2低通原型滤波器经阻抗变换器K和串联谐振器或导纳变换器J和并联谐振器转换而成。根据低通原型元件数值和相对带宽可以计算出各阻抗或导纳变换器参数,然后得到各电容间隙的电纳。由归一化电纳可以计算出各谐振器的实际长度。在给定两接地板的间距以及中心导带的厚度直接可以计算出各电容间隙,从而设计出电容间隙耦合带通滤波器。
1.2T型接头设计
T型接头不仅起到功率分配的作用,同时起到端口匹配作用。如图3所示为了使两个滤波器相互不影响,在端口2低通滤波器前还需要串联一段长度为λ1/4(λ1为端口3带通滤波器中心频率的介质波长)阻抗为50 Ω的特性阻抗微带传输线变换后接到公共输入端口1,使得带通滤波器的传输频率在低通滤波器端短路,经过λ1/4传输线阻抗后变成开路,从而不影响端口2的低通滤波器。

本文引用地址://m.amcfsurvey.com/article/160470.htm

f.jpg


由于T型接头效应,实际的串联微带线长度要略小于λ1/4,其具体的长度可以先根据滤波器中心介质波长计算λ1/4变换微带线的长度来设定一个初始值,然后用ADS软件进行优化确定。同理,在端口3带通滤波器前也要串联一段λ2/4(λ2为端口2低通滤波器中心频率的介质波长)阻抗为50Ω的特性阻抗传输线,使低通滤波器的传输频率在带通滤波器端短路,经过λ2/4传输线阻抗后变成开路,从而不影响端口3的带通滤波器。

2的设计
2.1 微波双工器的仿真设计
本文设计的微波双工器是由上面分析的高、低阻抗线低通滤波器和电容间隙耦合带通滤波器通过T型接头并联构成。微波双工器原理图3所示,设计的微波双工器的两信号通道分别为0~400 MHz和1.5~4.5 GHz。在设计过程中发现,由公式计算的尺寸和仿真的结果有一定的出入,这主要由于公式是在理想条件下简易模型计算出来的,没有考虑各个环节的互相影响,而仿真模拟尽可能的考虑到这方面的影响。实际影响器件频率响应的还有很多其它因数,如贴片的边缘电容对电磁波的影响,介质损耗等等,因此响应特性在频率上有一定的搬移。为了满足微波双工器小型化的要求,对其低通滤波器的高阻抗线部分进行了折弯倒角设计,同时在其带通滤波器的设计过程中采用了保留电容的设计,这种方法在频率不是很高的情况下能够进一步减小微波双工作器的尺寸(因为一般的电容在高频存在寄生通道,这将影响滤波器的频率特性)。中,采用陶瓷介质基板作为微波双工器的制作材料,介质的相对介电常数εr=3.5,介质衬底厚度为h=0.8 mm,微带金属导体厚度t=0.035 mm介质的损耗角正切tg δ=0.001 8。微波双工器结构如图4所示,利用ADS软件对连接构成的微波双工器进行优化仿真,最终实现高度的微波双工器。

g.jpg

带通滤波器相关文章:带通滤波器设计




评论


相关推荐

技术专区

关闭