关 闭

新闻中心

EEPW首页>工控自动化>设计应用> 小型无人靶机掠海定高飞行控制系统设计与实现

小型无人靶机掠海定高飞行控制系统设计与实现

作者: 时间:2009-11-12 来源:网络 收藏

2 高度控制律
2.1 基本控制律
为了减少风险,高度控制律采用经典的比例一微分(PD)控制。
其时域表示为:

其控制原理如图2所示。

本文引用地址://m.amcfsurvey.com/article/163487.htm

控制量由四部分组成,包括姿态控制内回路和高度控制外回路的各两个控制量。姿态控制内回路:与俯仰角偏差△θ成正比的比例控制器作为主控制对俯仰角进行修正,与俯仰角速率θ成正比的微分控制器主要用于改善姿态内回路的阻尼特性。
高度控制外回路:与高度差△H成正比的比例控制器作为主控制对高度进行修正,与垂向速度冉成正比的微分控制器则主要用于改善高度外回路的阻尼特性。
2.2 信号处理方法及效果分析
在基本控制律确定后,一个必须解决好的主要问题就是如何获取高质量的反馈控制信号。俯仰角偏差△θ与俯仰角速率θ,按常规做法可分别由垂直陀螺和角速率陀螺提供满足精度要求的信号。这里主要问题在于高度信号H和垂向速度信号H的获取和处理。无线电高度表信号由于海浪起伏等因素的影响本身含有大量的噪声,并且如果直接采用高度表信号微分获取垂向速度信号,会引起系统不稳定,不能单独使用;如果采用加速度计信号积分获取垂向速度信号和高度信号,又存在误差累积的问题,也不能单独使用。然而如果将两者组合使用,则可以产生很好的优势互补效果。所以,本文采用了一种Kalman互补滤波算法,既可滤除高度信号噪声,又可获得高质量的垂向速度信号。其设计思想是通过对垂向加速度信号进行积分得到垂向速度,再对垂向速度积分得到高度,将此高度与高度表的实际测量高度进行比较,得到一个偏差量。把该偏差量作为当前时刻的误差估计值重新加入到垂直加速度和垂直速度上继续进行滤波运算。高度信号与垂向加速度信号互补滤波的原理如图3所示。


再对该滤波算法的效果进行分析。设拖靶的实际高度为Hr,记a=Hr+Na,其中Na表示加速度的误差,则有:

记H=Hr+Nh,Nh表示高度的误差,则有:

从上面可以看出,解算后的速度V由三个部分组成:
真实高度的微分:sHr(s)


这样得到的垂向速度和高度信号中,加速度误差和高度误差的信号能够被有效地滤波,特别是能够有效地去除海杂波的影响。



评论


相关推荐

技术专区

关闭