关 闭

新闻中心

EEPW首页>工控自动化>设计应用> PMAC控制下的高精度转台双闭环伺服系统设计与调试

PMAC控制下的高精度转台双闭环伺服系统设计与调试

作者: 时间:2009-07-21 来源:网络 收藏

Ⅱ型卡提供了编码器译码方式可以是内部脉冲+方向,其译码器输出的脉冲+方向信号是由n 通道中的脉冲频率调节器(PFM)输出电路产生的。它可以产生一个假想的闭环来驱动开环步进系统。我们分析如果将的编码器译码方式设置为内部脉冲+方向,其译码输出由内部脉冲频率调节器(PFM)输出电路产生,这样可以避免一些与驱动器间的不匹配。在将I7240 设置为8(内部脉冲+方向)后,我们将闭环后,来回漂动现象消除了,用“j=10000”运行(手动走到绝对位置为10000counts 处)后编码器反馈显示为10000counts,没有了抖动,并且在设置为内部脉冲+方向后,根据运行结果看,其编码器反馈进入后也进行了四倍频,分辨率达到2621440 脉冲数/转。到此,该故障得以排除。

2.3 PID 调节

在系统中,为了获得良好的稳态特性和动态特性,需要对系统的环进行校正和调整,所以当系统的基本特性(包括机械传动、电机选型等)确立后,就需要对系统的环进行调整了。在以PMAC 为核心器的系统中,通过调节它提供的PID+速度/加速度前馈调节器的参数能解决大部分的系统特性问题,这些参数包括比例增益(proportional)、积分增益(integral)、微分增益(differential)(即PID 控制);速度、加速度前馈(feedforward);摩擦增益等等。典型PID 伺服环,如图2 所示。

图2 典型PID伺服环


Pewin32 提供了两种信号源(脉冲和正弦波信号)进行PID调整,脉冲响应过程主要是用来调整系统的P、I、D 等参数,而正弦波响应主要是用来调整系统的动态特性。PID 调整过程首先将所有运行的运动程序和PLC 程序停止,然后下载自己一段小程序,让电机转动,实时采集数据,绘制出脉冲或正弦响应曲线,让用户通过响应曲线来判断系统的特性。

PID 调整必须在了解各参数的具体作用,并不断的实验,最好是先作脉冲响应调整,主要调整比例、积分、微分增益,在脉冲响应曲线调整最好的状态下,不要更改比例、积分、微分增益,作正弦响应调整,正弦响应调整主要调整速度、加速度前馈和摩擦增益等参数,以下对空载的PID 进行调整,在经多次调整后我们得出了各参数的最优化设定值。各参数意义及设定值,如表1 所示。


表1 PID调节参数意义及设定值

在该参数下,得出脉冲响应和正弦响应曲线,如图3 所示。从图中可以看出,脉冲响应曲线中,命令位置和实际位置基本重合,正弦响应曲线中指令速度曲线和时间速度曲线已经完全重合,速度跟随误差很下,幅值只有±4 个脉冲。在该种状态下,我们用数控程序运行转台时其跟随误差只有1 个脉冲计数,相当在圆周上0.5s 角度的误差,其动态响应已经相当快了。

图3 PID调整曲线


3 结 论

对转台的过程中,一般会遇到许多的问题,总结起来在时应注意:

(1)硬件连线:仔细检查驱动器与转台、驱动器与控制卡之间的连接,编码器反馈的连接。
(2)环境干扰:外界温度、振动、电磁干扰都可能影响到系统的精度与动态特性,调试时应有良好的环境。
(3)PMAC 参数的设置:对于PMAC 卡,由于其型号较多,不同的型号参数设置不太一样,调试过程中需要仔细研究其参数的设置。
(4)PID 调节:PID 调节直接影响到系统特性,PID 参数调节要根据各参数的特点,不断的实验,找到一个最佳的参数配置。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭