新闻中心

EEPW首页>光电显示>设计应用> 太阳能LED路灯的研制

太阳能LED路灯的研制

作者: 时间:2012-06-04 来源:网络 收藏

2 系统硬件电路设计
2.1 控制器
采用美国Silicon Labs公司推出的Si1000芯片作为控制器,集成了超低功耗MCU及高穿透力的RF芯片。Si1000系列无线微控制器内部集成了25 MHz的8051内核,EZRadioPRO系列略低于1 GHz的RF收发器件,最大64 kB的Flash以及最高12 bit分辨率的ADC,所有这些均集成在一个5 mmx7 mm的紧凑的封装中。Si1000系列无线微控制器为用户提供领先的RF性能,包括最高的发射功率,最高的接收灵敏度和最高20dBm的发射功率和-121 dBm的灵敏度,使系统拥有了高达141 dB的链路预算。文中无线遥控RF频率为433MHz。单片机的P1.6与P1.7分别与LT3652的CHRG和FAULT引脚相连,用于检测蓄电池的充电状态。P1.5与LT3756的PWM引脚相连,可以产生不同占空比的PWM信号,驱动照明及调光。P2.0与P2.1分别与光照强度及声音检测模块输出端连接,实现对灯的自动控制。
2.2 充电电路
采用LT3652充电芯片,其输入电压调节环路电路提供几乎与最大峰值功率跟踪(MPPT)充电方法同样的充电效率,如图2所示。板输出电压随太阳光的强度变化,LT3652可接受4.95~32 V的宽输入范围,可以满足板的输出范围。在输入电源调节欠佳时,输入电压调节环路还允许优化充电。该器件可为各种配置的电池组充电。LT3652的充电电流可编程高达2 A。可以通过对R1的选取来设置充电电流,文中R1取值0.1Ω,对应充电电流为1 A。这个独立的电池充电器不需要外部微控制器,具有用户可选的终止,包括C(蓄电池额定容量)/10或内置定时器。本文采用定时器中止方法,通过对电容C1的取值的完成对中止时间的设置。例如选择1个0.68μF的电容可以设置为3小时定时中止。该器件的1 MHz固定开关频率可实现小的解决方案尺寸。浮置电压反馈准确度规定为0.5%,充电电流准确度为5%,C/10检测准确度为±2.5%。一旦充电终止,LT3652就自动进入低电流备用模式,这种模式将输入电源电流降至85μA。在停机模式,输入偏置电流降至15μA。就自主充电控制而言,如果电池电压降至比设定的浮置电压低2.5%,那么自动再充电功能就启动一个新的电周期。本文对12 V 50 AH的密封铅酸进行3阶段充电。第1阶段以1 A恒流快速充电到蓄电池电压达到14.4 V;第2阶段以14.4V恒压充电,当电流下降到0.1 A时进入第3阶段,13.5V浮充阶段;当蓄电池电压低于13.2V时,自动进入新一轮充电。电路中的R9为一个热敏电阻,当检测到蓄电池温度超出0~45℃范围时,芯片将停止充电,可有效保护蓄电池并延长其使用寿命。

本文引用地址://m.amcfsurvey.com/article/167943.htm

b.jpg


2.3驱动电路
LED驱动电路采用具有高端电流检测DC/DC转换器LT3756,该器件为驱动大电流LED而设计,如图3所示。其6~100 V的宽输入电压范围使该器件非常适合于种类繁多的应用,包括汽车、工业和建筑照明。文中R1、R2、Vin和SHDN组成的分压电路可以将输入电压范围限制在8~80 V,可以满足12 V蓄电池作为电源。LT3756使用一个外部N沟道MOSFET,可以用标称值为12 V的输入驱动多达20个1 A的白光LED。文中驱动12x1 W串联的大功率白光LED,测得LED两端电压34~38 V之间,所以要求C2的耐压值要高于38V,这里选用耐压值为50V 10μF的电容。它含有高端电流检测,从而使它能够用于升压、降压、降压-升压、SEPIC(单端初级绕组电感变换器)中。文中采用SEPIC模式,这种电路最大的好处是输入输出同极性,尤其适合于电池供电的场合,另外通过主回路上的电容C1实现输入输出的隔离,具备完全关断功能,当开关管关闭时,输出电压为0 V。LT3756在升压模式时可以提供超过90%的效率,从而无需任何外部散热措施。频率调节引脚允许用户在100 kHz~1 MHz范围内对频率编程,本文对R2取值28.7 kΩ将频率设置为400 kHz,在优化效率的同时也最大限度地减小了外部组件的尺寸和成本。结合3mmx3mm QFN或耐热增强型MSOP-16封装,LT3756提供了一个非常紧凑的驱动器解决方案。

c.jpg



评论


相关推荐

技术专区

关闭