新闻中心

EEPW首页>光电显示>设计应用> 亮度智能LED控制卡系统在隧道中应用

亮度智能LED控制卡系统在隧道中应用

作者: 时间:2009-08-28 来源:网络 收藏

(3)应急照明控制

意味着一旦供电停电,将使驾驶人员难以把握方向,极易造成交通事故。城市短通常可不设应急照明,但考虑到寿春路是一条弧形隧道的特殊性,设计时增设了不间断应急照明

  在高速公路隧道中,应急照明应不小于基本照明的10%,且布设间距一般在20~30米一盏。这种传统的布设方式使得应急照明状态下的照度均匀度极差,这在突然停电的情况下依旧存在较大地事故隐患。因此,我们在设计应急照明系统时放弃了传统的大间距布设方式,充分利用灯的可控特性,将所有的基本照明灯全部兼作应急照明灯。当市电断电时,由EPS电源为基本照明灯具供电。此时装置瞬间将基本照明灯具的功率同步控制到额定功率的20%左右。这使得系统在市电断电情况下应急照明的配光特性与原先的基本照明相同,最大限度地避免了交通事故的发生。在灯具安装后,我们对现场应急供电情况进行了验证,在市电断电瞬间,加强照明全部熄灭,基本照明灯具的亮度全部保持在低亮度状态,经测试,应急照明状态下路面平均亮度为0.6cd/m2,达到了预期的设计目标。

2.照明亮度无级系统介绍

(1)系统简介

  隧道LED照明的无级LED系统目前国内已有多家公司研发出来,但大多未得到实际,有的在实际时无法控制。在本隧道照明设计中,我们采用了已在高速公路上得到良好的控制方案。LED控制卡系统的洞外亮度监测装置将检测到的隧道洞外亮度信号转换为4~20mA标准信号传送至亮度无级LED控制卡上,再由其换算后转换为0~5V的直流模拟信号输出,去控制LED灯上的电压控制电流源。电压控制电流源的控制端电压的变化会使其输出电流随之变化,而输出电流的变化,又会引起LED输出的光通量发生变化,从而达到控制被照场所亮度的目的。

(2)LED控制卡控制距离要求

  本系统LED控制卡装置放置在EPS电源柜内。EPS电源柜设置在洞口附近的南侧,距洞口约10m。从LED控制卡装置到隧道的另一端,控制线长度约220m。为了确保控制信号能够长距离传输而不会衰减,我们要求在采用0~5V的直流模拟电压传输控制信号时,其首尾出入口的控制误差不大于2%。信号能够长距离传输的先觉条件是灯具的控制输入端具有很高的输入阻抗。灯具的控制输入端阻抗越高,其吸入电流就越小,则控制信号总线上的电压衰减也就越小,控制信号的传输距离就越远。从一些厂家提供的灯具技术资料来看,有几家的灯具控制输入端的输入阻抗非常高;这使得每盏灯所需的控制电流非常微小,从而确保了信号经长距离传输后衰减微不足道。有的厂家能在控制3000盏灯的情况下,有效控制距离长达30km。这一控制距离几乎可以满足所有隧道和绝大多数城市道路的调光控制要求。

(3)电压与亮度对应关系

  为了避免系统断电,设计时采用了EPS电源为基本照明灯具供电,从而确保了电源不会中断。但另一方面,在电源正常供电情况下,如果照明LED控制卡装置发生某种故障,使得其无输出(这是一些电子系统的常见故障模式,如控制器电源故障等),仍然可能造成隧道内的照明强度突然低于应急照明的要求。为此,我们要求LED控制卡信号的0V对应灯具的最大亮度,5V对应灯具的最小亮度,且灯具的最小亮度不得低于额定亮度的10%。这一要求确保了任何故障状态下,只要EPS电源工作正常,隧道内的照明就会始终存在,从而最大限度地保障了行车安全。

3.应用情况介绍

  隧道LED照明亮度智能无级LED控制卡系统全部安装完成后,我们对系统的控制性能进行了验证。系统加强照明灯具的亮度白天可随着洞外亮度的变化而变化,在阴天还可看到加强照明灯具亮度明显低于基本照明,实现了无级调光。系统基本照明灯具白天的功率相对较高;在午夜23时至清晨5时车流量较小时,基本照明灯具均以白天功率的50%工作。在市电断电后,应急电源瞬间启动,所有基本照明灯具的功率均降至额定功率的20%。LED控制卡系统避免了过度照明所产生的电能浪费现象,实现了业界长期追求的按需照明的理想。系统与原分级调光的钠灯照明相比,每年可节省电能70%以上。

4.结束语

  隧道中成功地采用了隧道LED照明亮度智能无级控制系统。它的投入使用,将大幅降低隧道的照明能耗,减小LED灯具的光衰,延长灯具和电源的使用寿命;同时也为关注照明节能的业内人士提供了一种可供借鉴的城市隧道智能化照明工程案例,为隧道实现按需照明开辟了全新的途径。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭