新闻中心

EEPW首页>电源与新能源>设计应用> 智能功率开关电源IC设计

智能功率开关电源IC设计

作者: 时间:2013-08-09 来源:网络 收藏

本文引用地址://m.amcfsurvey.com/article/174843.htm

3.5 热关断电路

热关断电路如图6所示。正常情况下T =25℃,Vz=6.3V,V BE1=0.75V,VBEH=0.65V,此时 VH = R3 ( Vz -VBE1) / (R2+R3)=0.43V VBEH

故Q1不导通,从而Vout 为高电平。

故障状态,稳压管的温度系数为正,而晶体管的VBE 为负温度系数。设计的温度保护能力(当T=150℃)为

同样计算可得VH(150℃)=0.46V,这样Q 2 导通,Vout为低电平。此信号直接关断MOSFET。同时这个脉冲信号也输入到1/8分频器,做计数用。

3.6 高压启动电路

高压启动电路如图7所示,当IC上电后,整个IC处于建立工作环境的状态。VDMOS的栅极为高电平,则该管导通,Out端有充电电流。当 Vcc达到8.6V时,过压保护电路送来信号 Vstart为一低电平,使得P2导通,这样VDMOS截止。另外 R1的作用是充电电流过大时,使P1、Q1导通,使

VDMOS截止,起到保护作用。此充电电流能力设计值为3mA,超过该值,VDMOS就会截至。根据计算,整个IC建立工作环境所需的时间为40ms,与实际仿真结果相符。

3.7 驱动电路

设计驱动电路的目的是为了去除驱动信号的毛刺和对MOSFET的栅极起保护作用(图8)。正常时,N1、N2、N3都处于截止状态。当电路内部电源电压Vcc由低电平突然变为高电平时,电容C两端电压不能突变,这样N1导通,使输出为0。另外当IC突然上电时,由于MOSFET的栅漏电容的存在,使栅极的电压为高电平,但是由于设计中加了电阻 R和N3的存在,对栅极构成旁路,起到保护作用。最后就是如果IC突然断电时,则功率管漏极没有大电流供给。如果此时驱动为高电平,则可以从 R上卸流,最终使低电平变低。总之,N1、N2、N3对功率MOSFET 的栅极起保护作用。

3.8 前沿消隐电路

前沿消隐电路如图9所示。正常时,A点电压较低,2管导通,则C2输出为高电平;故障时,也就是功率MOSFET的电流过大时,A点电位升高,使得2管关闭,这样C2输出为低电平,出现故障脉冲。值得一提的是,2管的栅极输入信号和它的源极输入信号不是同步的,这样设计的好处是可以避免短暂时间内电流过大的情况。若电流一直很大,则可以发挥前沿消隐作用。这两个信号的延时大小由几级反相器和电容构成,其中以电容的贡献最大,其设计延时时间为200ns。

4 仿真结果

仿真过程中,着重对正常运行、过压、欠压、过流、过载等情况做了分析。图10中模拟了负载变化时功率MOSFET输出的变化情况。最下面一条波形为负载情况经过光耦合和低通滤波器后的电压,中间一条波形为IC内部电压 Vcc信号,最上面一条波形为功率MOSFET栅极上的驱动电压信号。可以看出,由于充电,Vcc不断增加达到8.6V时便不再增加(过压保护电路起作用),IC开始工作。当负载逐渐变小时,引起反馈电压升高,使得反馈到IC的信号增大,其功率MOSFET栅极的驱动电压的占空比减少,最终为0。

图11中模拟了IC内部电压发生异常时的情况。最下面一条波形为功率MOSFET的栅极驱动电压,中间一条波形为自动重启动电路的工作信号(Vstart),最上面一条波形为IC内部电压 Vcc信号。可以看出,当Vcc 上升到8.5V时,自动重启动电路关闭,同时计数器开始计数,这时功率MOSFET 还处于工作状态。当Vcc 降低到7.5V时,自动重启动电路开始工作,对外接10μF电容进行充电。这样反复进行8次,在第九个周期时,功率MOSFET再次工作,符合最初的设计要求。

5 结论

本文设计了一种适用于便携式设备的功率的IC,通过对其功能及特性的分析,设计了各个子模块的电路,并对其进行了模拟仿真。结果表明,负荷调节灵敏、精确,各种保护电路动作及时可靠。

pwm相关文章:pwm是什么


低通滤波器相关文章:低通滤波器原理


分频器相关文章:分频器原理
脉宽调制相关文章:脉宽调制原理

上一页 1 2 下一页

评论


相关推荐

技术专区

关闭