新闻中心

EEPW首页>电源与新能源>设计应用> 简述DC-DC开关电源小型化发展中的不足及其应对措施

简述DC-DC开关电源小型化发展中的不足及其应对措施

作者: 时间:2013-07-18 来源:网络 收藏

五、改进与应对的措施

由于存在着“换向问题”这类原理性的限制,以及我们所处的“微电子技术”这个时代性的限制,当密度和频率高到一定程度的时候,损耗将是不能容忍的。因此,以密度为120-180W/in3的软开关高频DC/DC模块以及密度为1000W/in3,开关频率为3.5兆周的功率芯片,它们的最大输出电流80-100A,不大可能再有大幅度的提高。换句话说,BCM、VTM可能已接近我们这个发展阶段最后的成果。

但是,在目前的技术条件下,我们还有潜力来大幅度提高上述模块和芯片的纹波噪声抑制能力。我们是否可以这样认为,在电源最基本的指标方面,一个具有这样指标的高频模块或者功率芯片,也许是我们这个发展阶段最后的成果:它们具有180-1000W/in3的功率密度,100A以上的输出电流与数百瓦-1千瓦的功率。同时,在所有负载下,都具有0.1-0.05%以下的纹波系数。并且,根据需要,基本上不用任何的外接元器件,通过串并联、反馈即可组成任何输出电压、电流和功率、各种规格、用途与指标的电源。

实现这个发展阶段最后的成果,取决于电源的各个组成部分都得到平衡的发展,取决于大电流电感滤波器小型化的可能性。比如说,一个具有极高的电感/体积比 L/V的大电流输出电感性滤波器NIF连接于100A功率芯片VTM的输出端,它的电感L足以使VTM的纹波系数在全负载内均低于0.1-0.05%,而体积仅相当于VTM中的3.5MHz功率变压器。那么,安置了这种NIF的功率芯片不仅有极高的功率密度,而且有极低的纹波系数。

但是,从电源的发展史中我们也知道,对输出滤波器的研究,特别是大电流的电感性滤波器的小型化的研究是十分不够的:传统的电感性滤波器是不能满足要求的,它的体积很大,电感/体积比 L/V极低。在数十年前就已经确立的电源技术理论的数学物理模型告诉我们,在大电流输出的情况下,输出电感滤波器的体积在电源中占有最大的部分,输出电流越大占有的体积比率也越大, L/V也越低。如果我们能在这方面取得突破性进展,在基本理论方面有新的研究成果,运用于高功率密度的电源产品中。那么,我们就有可能在功率密度、大电流输出、很低的纹波系数等方面都获得令人满意的指标。

鉴于上面的理由,本人十分有兴趣的致力于大电流输出的电感性滤波器小型化的研究,并取得实效。本文将向大家宣告一种具有极高的电感/体积比 L/V的大电流输出电感性滤波器NIF的问世,它将使上述问题得到满意的解决。关于NIF比较详细的情况,在以后的文章中我还要论述它。

六、一种具有极高的电感/体积比 L/V的大电流输出电感性滤波器NIF

我们知道,传统的电感性滤波器是一个储能元件,它的体积将与它的输出电流的平方成正比,即V=kI2,也就是说,它的体积与它储存的能量成正比。这与功率变压器有着本质的区别。比如说,足以使100A功率芯片VTM的纹波系数低于0.1-0.05%的输出电感性滤波器的体积将比VTM中的3.5MHz,100A功率变压器的体积要大得多。

我们能不能企图去改变电感性滤波器这类元器件本身的电学物理学特性,使它能够很容易的达到电源系统对它的体积的限制呢?

我们经过数年的研究,开发出一种新型的大电流输出电感性滤波器NIF。它不同的有区别的特征是:NIF不是一个储能元件,这是最主要最本质的改变。因而,它的体积不是与输出电流的平方成正比,而只是与输出电流成正比,即V=kI。这也就是说,在电感量L和额定输出电流I都相同的条件下,NIF与传统的输出电感性滤波器的体积之比是和输出电流成反比。即:

(Vn/V)= h(1/I)1

其中:Vn、V、h、I 分别为 NIF体积,传统输出电感滤波器的体积,比例系数,输出电流。两者的电感量,工作频率,额定输出电流都相同。

这就是说, 与传统的输出电感性滤波器相比, NIF的体积将大为缩小了。而且电流越大,缩小得也越多。

NIF的体积与工作频率成反比,与电感量L和输出电流I成正比,因而具有极高的电感/体积比 L/V。这种优质的特性是归功于一种新颖的思路和独特设计方法,比如说,一个适合于3.5MHz工作频率, 输出电流100A的NIF, 它的电感足以使100A VTM功率芯片的输出纹波系数小于0.1%—0.05%,但它的体积只相当于这个功率芯片VTM中的功率变压器的体积。如果我们把它集成在VTM内,因为它非常的小,不至于太多的降低功率芯片的功率密度。

NIF的极高的电感/体积比 L/V,使电源的各个组成部分得到了平衡的发展,将使高功率密度高频DC/DC模块,或者功率芯片,在所有的负载情况下,都能达到很低的纹波系数。从而使数十年来不断努力追求的两个基本目标得以实现。

还需要着重提及的是,由于NIF不是一个储能元件,因此它不是提高响应速度的限制性因素,这也是NIF无与伦比的优越性之一。

七、关于响应速度

最后,有必要对电源的纹波系数指标和响应速度的关系加以分析,我们知道,一个控制系统的动态指标和静态指标之间是有矛盾的。比如说,一个理想的感应分压器(变压器)或者电阻分压器,它们的响应速度是极快极快的。但是,它们的谐波抑制能力等于零。同样的,功率芯片VTM中的变压器,接近于理想变压器,因此有很快的响应速度,但是,它们的纹波抑制能力则是不强的。至于是主要满足静态指标还是动态指标,这要根据使用者的需要来综合考虑确定。比如说,先根据要求设计滤波器以达到100A输出时纹波系数小于0.05%,这时响应速度可能不够,我们则可采用合适的闭环控制,如果控制系统具有足够的开环增益与合理的开环频率特性函数,一般来说也可以达到预定的闭环响应速度。

八、对开关电源发展的展望

在高频化方面:频率的提高肯定是有极限的。基本的电路理论告诉我们:一个周期的时间应当比一个开关的动作时间长得多,否则过渡过程的处理就会越来越困难,而一个开关能量的释放,电路中的储能元件能量(或电荷)的转移都是需要时间的,能量越大需要的时间就越长。另外还存在着高频工作受寄生参数的影响越来越大、控制电路越来越复杂等更多的难题。能量是不能突变的,我们无法‘制造永动机’。

在小型化方面:以功率密度为120-180W/in3的软开关高频DC/DC模块仍然是当今世界模块电源最佳的主流产品。新出现的分比式功率架构中的功率芯片,其功率密度甚至达到了1000W/in3,3.5MHz。它的工作频率再一次的提高比从20KHz提高到数百KHz要困难得多。这似乎在说明,在现在微电子技术的条件下,或者已经接近到频率使用的极限。如果超出了这个范围,电源制造的难度将显着加大,是否合理可能发生问题。另外,由于直流电源系统内部各部分技术的发展存在不均衡性,其中发展最快的是整流器技术,而配电技术则相对发展缓慢。以通信电源系统为例,一次电源的核心部件整流器的功率密度不断提高,推动了通信直流电源整机的功率密度不断提高,但由于配电器件、蓄电池等密度基本维持稳定,这也一定程度制约了整机系统的功率密度的提高比率。

在元器件、控制技术和制造工艺、集成技术等等其它方面:在现在电子技术的条件下,除了还没有发现新的物质特性,如常温超导等物质特性外,我们已经成功的解决了很多的问题:如功率半导体器件、高频磁元件的材料、功率变压器、新型电容电感、谐振技术与软开关、同步整流技术、分布电源结构、PFC变换器、全数字化控制、电磁兼容性、设计和测试技术、控制系统的集成化等等。

据此,有的学者认为:按照“创造性解决问题的理论”,这个描述技术系统发展进化规律的理论,一般而言,技术的生命周期包含四个阶段:婴儿期、成长期、成熟期和衰退期,种种迹象表明,目前直流电源的核心技术--开关电源技术基本上开始步入成熟期:效率的提升变得缓慢和困难、而电源损耗不能大幅度降低限制了功率密度的进一步提高,……未来几年甚至十几年内,直流电源产品将进入一个缓慢发展的阶段,直至有一天,一种新的电源变换技术出现,直流电源产品就会再出现一个阶跃性的发展,就象开关稳压技术替代线性稳压技术,给电源带来了革命性的变化。

我认为,这个推断大致是正确的。但是,在这种新的电源变换技术出现之前,我们还能够作些什么呢?

现在电源制造的标准与规格是五花八门的,这是技术落后时代的产物,不利于技术的进步,也不利于用户的使用。在电源技术步入成熟的今天,我们应当力求使电源的制造标准统一于一种先进的模式。

我十分欣赏和赞成分比式功率架构这种灵活的电源组成结构,根据这种芯片化的思想,我们可以按照组成电源的各个功能部件,全部制成相应的功能(功率)芯片,这样一来,我们就可以根据需要,基本上不用任何的外接元器件,通过串并联、反馈即可组成任何输出电压、电流和功率、各种规格与指标的电源。

这些功能(功率)芯片是组成电源最基本的单元,它们应该有最优秀的品质,不用任何的外接元器件。芯片的制造标准化,并有各种规格。

这也许是我们这个发展阶段最好的选择。

上面的文章仅仅是提出了问题,在以后的文章中,本人将对必须涉及的,更多的具体问题,全面详细的展开讨论与评估,并力图提出解决这些问题的思想和方法。同时也欢迎电源业界的同行们,参与我们的讨论和评议。

dc相关文章:dc是什么


电源滤波器相关文章:电源滤波器原理



上一页 1 2 下一页

评论


相关推荐

技术专区

关闭