新闻中心

EEPW首页>电源与新能源>设计应用> 2.7V 至 40V 单片降压-升压型 DC/DC 转换器增强了输入功能 在汽车冷车发动和负载突降瞬态时能无缝地稳定电压

2.7V 至 40V 单片降压-升压型 DC/DC 转换器增强了输入功能 在汽车冷车发动和负载突降瞬态时能无缝地稳定电压

作者: 时间:2013-05-08 来源:网络 收藏

低 EMI 且在 AM 频段无辐射

LTC3115-1 具有一种低噪声强制 PWM 模式,两个开关引脚在该模式中均工作于恒定频率 (对于任何负载都是如此),因而产生了一种与工作条件无关的低噪声频谱。可预知的频谱和极少的次谐波辐射可帮助降低干扰并有助于符合严格的汽车 EMI 标准。

LTC3115-1 支持高达 2MHz 的开关频率,这样基础开关频率分量及其所有谐波均可位于 AM 频段以上,以最大限度地减少对无线电接收的干扰。当图 2 所示的汽车应用电路在无负载及具有一个 500mA 负载的情况下运作时,LTC3115-1 在 AM 频段上的频谱辐射示于图 6。在这两种场合中 AM 广播频段之内的整个频率范围均未遭受任何显著的频谱辐射。

固定频率低噪声 PWM 可最大限度地减少 AM 频段上的辐射

图 6:固定频率低噪声 PWM 可最大限度地减少 AM 频段上的辐射

SW AMPLITUDE:SW 幅度

2MHz FUNDAMENTAL:2MHz 基本开关频率

AM BAND:AM 频带

NO LOAD:无负载

500mA LOAD:500mA 负载

FREQUENCY:频率

应对多个电源 —— 未稳压交流适配器、汽车输入、USB、USB-PD 和 FireWire

为了提高灵活性和提升用户体验,很多便携式电子设备都设计成可配合不同的电源工作。这些电源之间的电压可能相差很大,尤其是考虑到连接器和电缆压降时。

在 USB 3.0 情况下,标称供电电压为 5V ±5%,但是考虑到可允许的电缆和连接器压降时,完全符合要求的受电设备必须能在低至 4V 时工作。此外,在瞬态情况下,例如当更多设备插入主机或受电插座时,允许下游 USB 电源轨降到低至 3.67V。

新批准的 USB PD (功率传送) 规范允许比 USB 高的功率传送,支持高达 20V 的电源电压。Firewire 端口提供未稳压电源轨,其电压在很大的范围内变化,视供电设备类别的不同而不同,一般在 9V 至 26V 之间。

普及的交流适配器也许仍然是便携式设备最常见的电源。典型的交流适配器只是一个变压器,其后跟着一个桥式整流器,从而提供了非有源调节。而该任务就留给了终端设备,以避免电缆压降的影响。未稳压交流适配器设计成以规定的典型输出电压提供额定电流。由于输出电压是未稳压,所以输出电压是负载电压的函数,在较轻负载时大幅提高,在重负载时会下降。此外,AC 线电压允许在 105V 至 125V 之间变化,从而在未稳压交流适配器输出额外增加了 10% 的变化。一个 12V 的未稳压交流适配器在轻负载时产生 17V 或更高的输出电压并非不常见。

LTC3115-1 可直接用所有这些便携式电源以及各种化学组成的电池工作,电池包括锂 (单节或串联连接的)、密封铅酸、3 节或更多节串联的碱性电池、甚至超级电容器组以适用于备份应用。多个电源可以通过肖特基二极管“或”电路组合在一起。

为了实现更高的效率,通过用低压差 P 沟道功率 MOSFET 取代肖特基二极管,LTC3115-1 可与理想二极管电源通路 (PowerPath) 控制器相结合,以在多个电源之间实现自动切换。图 7 显示了 LTC3115-1 怎样才能与 LTC4412HV 相结合,以获得由单节锂离子电池和未稳压交流适配器提供的双输入 5V 电源。在图 7 情况下,较低电压的锂离子电池输入端采用了一个串联 PMOS,同时较高电压输入端采用了廉价的肖特基二极管,在这里,肖特基二极管的压降微不足道。图 8 就每一个电源输入,给出了这个电源 (包括转换器和电源通路) 的总体效率。

为了实现高效率,这个双输入 5V 电源在电池通路中采用 LTC4412 低损耗电源通路 (PowerPath#8482;) 控制器和 P 沟道 MOSFET 取代了肖特基二极管。廉价肖特基二极管用在较高电压输入端,在这里,肖特基二极管的压降微不足道

图 7:为了实现高效率,这个双输入 5V 电源在电池通路中采用 LTC4412 低损耗电源通路 (PowerPath™) 控制器和 P 沟道 MOSFET 取代了肖特基二极管。廉价肖特基二极管用在较高电压输入端,在这里,肖特基二极管的压降微不足道。

UNREGULATED WALL ADAPTER:未稳压交流适配器

8V TO 28V:8V 至 28V

LITHIUM CELL:锂离子电池

电源通路和 LTC3115-1 的总体效率

图 8:电源通路和 LTC3115-1 的总体效率

EFFICIENCY:效率

波段开关相关文章:波段开关原理


超级电容器相关文章:超级电容器原理


电子负载相关文章:电子负载原理


评论


相关推荐

技术专区

关闭