新闻中心

EEPW首页>电源与新能源>设计应用> 平均电流模式控制的电流检测变压器电路设计

平均电流模式控制的电流检测变压器电路设计

作者: 时间:2012-06-28 来源:网络 收藏

该电压出现在磁化电感的时长为(方程式 5):

TonL = DL / Fosc = 6.995 s

磁化电感磁化的变化为(方程式 6):

Imagpk = (TonL * Vind) / Lmag = 9.466 mA

这时,你需要确认该没有出现饱和。利用推导所得值,其计算方程式如下(方程式 7):

Bpk = (37.59 * Vind* DL*105)/(N*Fosc*10-3) = (37.59 * 2.707 * 0.699 * 105)/(100 * 105 * 10-3) = 711.6

根据产品说明书,最大允许通量水平为 30% 左右,即 2000。

由于这种配置的通量密度是在极端条件下得到的,其不到易产生饱和的通量水平的一半,因此只要在“关闭”时间能够急剧降低,那么就允许磁化增加(这时几乎为原来的三倍)。

为了防止“走向”饱和,你需要在 Q1 关闭期间有一个伏秒积分。这样便可在“开启”时间平衡伏秒积分。通过放置一个电阻器 R1(称作重置电阻器),可以达到这个目的,这样“开启”期间形成的磁化便会在“关闭”期间强制在该重置电阻器 (R1) 中形成一伏特电压。请记住,该电阻器的电压会随磁化电流减少而下降。

要想知道 R1 的值,可设置峰值磁化电流为 2 * DImagpk,然后设计电路,这样在“开启”期间所选电阻器便会降低磁化电流至0.5 * DImagpk。这样可以确保峰值电流低于2 * DImagpk时也能正常工作。

将磁化电感的初始电流设置为 Iinit = 20 mA,把最终磁化电流设置为 Ifinal = 5 mA。“关闭”时间为Toff = 3.005 μs,而所选的磁化电感Lmag为2 mH(产品说明书提供)。知道这些信息后,便可得到R1电阻器的值(方程式 8)。

R1= ((ln(Iinit/Ifinal)) * Lmag) / Toff) = ((ln(4)) * 2 mH) / (3.005 μs) = 922.6Ω

这时,解决方案的一半已经完成。你还需要解决增压二极管电流器的电流变压器电路的设计问题。T2 电流变压器的极端情况是最大负载时出现峰值最大线压。

高线压峰值下主开关“开启”时间为整流二极管 D3 和 T2 电流变压器一次绕组的最大导电时间。这就是将要用于设计的状态。

由于相同一次电流需要相同的电流电阻器电压,因此两个变压器所使用的Rsense 也相同。T2一次绕组的电流的导电时间为(1-D)。变压器一次绕组的最大导电时间为(方程式 9):

Tondiode = (1-DH) / Fosc = 9.369 μs

变压器的相应重置时间为(方程式 10):

Toffdiode = DH / Fosc = 0.631 μs

这些状态下(最大输入电压)T2 变压器一次绕组的电流大大小于低输入电压。高线压时,最大电流 IinHpk 仅为 5.87 安培。

这样便得到这些状态下的电阻器电压(方程式 11):

VRsencehigh = (IinHpk / N) * R2 = ((5.87 A) / 100) * 5.464 Ω = 0.292 V

基尔霍夫电流相关文章:基尔霍夫电流定律




评论


相关推荐

技术专区

关闭