新闻中心

EEPW首页>电源与新能源>设计应用> 基于IGBT光伏发电逆变电路的设计

基于IGBT光伏发电逆变电路的设计

作者: 时间:2012-03-06 来源:网络 收藏

1.2的原理
绝缘栅双极晶体管是相当于在MOSFET的漏极下增加了P+区,相比MOSFET来说多了一个PN结,当的集电极与发射极之间加上负电
压时,此PN结处于反向偏置状态,其集电极与发射极之间没有电流通过,因此IGBT要比MOSFET具有更高的耐压性。也是由于P+区的存在,使得IGBT在导通时是低阻状态,所以相对MOSFET来说,IGBT的电流容量要更大一些。表1所示为MOSFET和IGBT的性能对比,其中MOSFET的门栅极驱动损耗是比较低的,但相比于IGBT来说,IGBT的门栅极驱动损耗更低一些。

2
中的前级DC-DC变换器部分采用PIC16F873单片机为控制核心,后级DC-AC部分采用高性能DSP芯片TMS320F240为控制核心的全桥。为了提升太阳能光伏器的效率,可以通过降低逆变器损耗的方式来完成,其中驱动损耗和开关损耗是重点解决对象。降低驱动损耗的关键取决于功率开关管IGBT的栅极特性,降低开关损耗的关键取决于功率开关管IGBT的控制方式,因此针对驱动损耗和开关损耗的特性提出以下解决方案。
2.1 驱动电路
驱动电路是将主控制电路输出的信号转变为符合逆变电路所需要的驱动信号,也就是说它是连接主控制器与逆变器之间的桥梁,因此驱动电路性能的是至关重要的。采用EXB841集成电路构成IGBT的栅极驱动电路如图3所示,EXB841的响应速度快,可以通过控制其栅极的电阻来降低驱动损耗,提高其工作效率。EXB841内部有过电流保护电路,减少了外部电路的,使电路设计更加简单方便。比较典型的EXB 841的应用电路,一般是在IGBT的栅极上串联一个电阻Rg,这样是为了可以减小控制脉冲前后的震荡,而选取适当Rg的阻值则对IGBT的驱动有着相当重要的影响。此次电路在EXB841典型应用电路的基础上,优化IGBT栅极上串联的电阻,使其在IGBT导通与关断时,其电阻随着需要而有所变化。

本文引用地址://m.amcfsurvey.com/article/177791.htm

c.jpg


具体实施如下:采用Rg2和VD1串联再与Rg1并联,当IGBT导通时,由驱动电路内部EXB841的3脚输出正电压,VD1导通,Rg1和Rg2共同工作,因为并联后的总电阻小于每一个支路的分电阻,所以串联在栅极上的总电阻Rg的值比Rg1,Rg2的值都要小,这样使得开关时间和开关损耗随着总电阻值的减小而减少,进而降低驱动损耗。当IGBT关断时,该驱动电路内部EXB841的5脚导通,3脚不导通,IGBT的发射极提供负电压,使得与Rg2串联的VD1截止,Rg1工作,Rg2不工作,此时串联在栅极上的总电阻Rg的值就是Rg1的阻值,这样在关断IGBT时不会因为栅极间的电阻过小而导致器件的误导通,进而提高了工作效率。
2.2 软开关
针对开关损耗,采用软开关技术。软开关技术是相对于硬开关而言的,传统的开关方式称为硬开关,所谓软开关技术就是半导体开关在其导通或关断时的时间很短,使流过开关的电流或加在开关的电压很小,几乎为零,从而降低了开关损耗。实质是通过提高开关频率来减小变压器和滤波器的体积和重量,进而大大提高变换器的功率密度,降低了开关电源的音频噪声,从而减小了开关损耗。

DIY机械键盘相关社区:机械键盘DIY




评论


相关推荐

技术专区

关闭