新闻中心

EEPW首页>电源与新能源>设计应用> 开关电源功率变压器的设计方法

开关电源功率变压器的设计方法

作者: 时间:2011-12-08 来源:网络 收藏

用铁氧体磁性材应满足以下要求:

(1)具有较高的饱和磁通密度Bs和较低的剩余磁通密度Br

磁通密度Bs的高低,对于和绕制结果有一定影响。从理论上讲,Bs高,的绕组匝数可以减小,铜损也随之减小。

在实际应用中,高频变换器的电路形式很多,对于而言,其工作形式可分为两大类:

1)双极性。电路为半桥、全桥、推挽等。变压器一次绕组里正负半周励磁电流大小相等,方向相反,因此对于变压器磁心里的磁通变化,也是对称的上下移动,B的最大变化范围为△B=2Bm,磁心中的直流分量基本抵消。

2)单极性。电路为单端正激、单端反激等,变压器一次绕组在1个周期内加上1个单向的方波脉冲电压(单端反激式如此)。变压器磁心单向励磁,磁通密度在最大值Bm到剩余磁通密度Br之间变化,见图7,这时的△B=Bm-Br,若减小Br,增大饱和磁通密度Bs,可以提高△B,降低匝数,减小铜耗。

(2)在高频下具有较低的损耗

铁氧体的损耗,不仅影响电源输出效率,同时会导致磁心发热,波形畸变等不良后果。

变压器的发热问题,在实际应用中极为普遍,它主要是由变压器的铜损和磁心损耗引起的。如果在变压器时,Bm选择过低,绕组匝数过多,就会导致绕组发热,并同时向磁心传输热量,使磁心发热。反之,若磁心发热为主体,也会导致绕组发热。

选择铁氧体材料时,要求损耗随温度的变化呈负温度系数关系。这是因为,假如磁心损耗为发热主体,使变压器温度上升,而温度上升又导致磁心损耗进一步增大,从而形成恶性循环,最终将使功率管和变压器及其他一些元件烧毁。因此国内外在研制功率铁氧体时,必须解决磁性材料本身功率损耗负温度系数问题,这也是电源用磁性材料的一个显著特点,日本TDK公司的PC40及国产的R2KB等材料均能满足这一要求。

(3)适中的磁导率

相对磁导率究竟选取多少合适呢?这要根据实际线路的开关频率来决定,一般相对磁导率为2000的材料,其适用频率在300kHz以下,有时也可以高些,但最高不能高于500kHz。对于高于这一频段的材料,应选择磁导率偏低一点的磁性材料,一般为1300左右。

(4)较高的居里温度

居里温度是表示磁性材料失去磁特性的温度,一般材料的居里温度在200℃以上,但是变压器的实际工作温度不应高于80℃,这是因为在100℃以上时,其饱和磁通密度Bs已跌至常温时的70%。因此过高的工作温度会使磁心的饱和磁通密度跌落的更严重。再者,当高于100℃时,其功耗已经呈正温度系数,会导致恶性循环。对于R2KB2材料,其允许功耗对应的温度已经达到110℃,居里温度高达240℃,满足高温使用要求。

五、功率变压器的

5.1双极性开关电源变压器的计算

前应确定下列基本条件:电路形式,开关工作频率,变压器输入电压幅值,开关功率管最大导通时间,变压器输出电压电流,输出侧整流电路形式,对漏感及分布电容的要求,工作环境条件等。

(1)确定磁心尺寸

1)求变压器计算功率Pt



评论


相关推荐

技术专区

关闭