新闻中心

EEPW首页>电源与新能源>设计应用> 一种高精度便捷式全数字示波器的设计

一种高精度便捷式全数字示波器的设计

作者: 时间:2011-06-02 来源:网络 收藏

2.2 测频电路
对信号的测频是根据等精度频率计的原理的。由可编程逻辑器件EPF10K50V完成,100 MHz的标准频率信号直接进入EPF10K50 V。器件采用信号输入变换电路输出的方波脉冲作为计数器的时钟输入信号,用标准的100 MHz进行记数,最后算出输入信号的频率。
通过图形法和VHDL语言对EPF10K50V编程,本中,CPLD完成对信号频率的测量。频率测量原理如下:在单位测量时间Tp中被测信号计数值为Nx,对标准信号的计数值为Ns,在已知标准频率fs的基础上,被测信号频率值fx满足:
b.jpg
2.3 幅度信号采集
为了满足对高频率信号的采集,选用ADI公司推出的AD7667来实现对被测信号的幅值测量。AD7667是16位A/D转换芯片,内部2.5 V参考电压,工作范围为0~2.5 V,LSB小于±2 b,转换速率为800 Kb/s,转换时间小于1μs,采用单+5 V电源供电。由信号变换电路把被测信号转化成工作范围内的有效值,进行精确测量。
2.4 人机交互部分
的显示及指令输入由智能终端设备LJD-ZN-3200K来实现。LJD-ZN-3200K是集输入、输出为一体的智能图形化界面输出设备分辨率为640×480,能满足系统设计的要求。该设备终端通过串行接口与主控制器通信,完成数据传输。
将设计好的图形界面加载到智能终端存储单元,然后按设定对坐标值进行识别,即可实现触摸式控制输入。共有9个功能键,分别为:3个垂直区分度选择按钮,用于垂直灵敏度选择;3个水平区分度选择按钮,用于水平扫描速度选择;采样方式切换按钮,用于选择实时采样和等效采样;波形存储按钮和波形调出按钮,用于当前的波形采集存储及调出;单次触发按钮,能对满足触发条件的信号进行单次采集与存储。

3 信号采集及处理分析
3.1 信号采集原理
对不同的频率信号进行测量时选取合理的采样手段将直接影响系统的测量精度,在信号分析技术中,常用的信号采样方法有两种:实时采样和等效采样。
实时采样(Real Sampling)通常是等时间间隔的,其最高采样频率是奈奎斯特极限频率,特点是,取样一个波形所得脉冲序列的持续时间等于输入信号实际经历的时间,所以取样信号的频谱比原信号还要宽。在本设计中采用A/D转换器件频率为400 kHz,根据采样特性可计算出该示波器能对不大于50 MHz的输入信号进行采样输出。
等效采样(Equivalent Sampling)是指针对周期信号的时域重复的特点,在不同的时间段进行多次较低采样率的采样,然后将这些低采样率的样本复合成高采样率的数据样本,从而真实重构出原始信号波形的数据采集方法。它利用信号的周期性,以增加采集时间为代价,降低对高速采样电路的压力,通过重组恢复原始信号。
本文采用提取等效采样时间采样,它是用信号的重复频率fi与采样率fs的特殊关系,使等效的采样率增加D倍。
首先,适当选取输入信号的重复频率fi,采样D个周期的信号波形,然后把记录的数据通过一个简单的算法重新排列组合,以获得一个完整的输入信号波形,这样等效采样率是实际采样率的D倍。
实际实现时,D的选取取决于所需要的等效采样率fe,使得fe=Dfs即可。而L是单个周期实际采样点的个数,L=int(M/D),M是记录的采样数据的总和。输出信号的重复频率为:
c.jpg
提取等效时间采样的方法可以提高采样率,但要求输入信号的重复频率fi要受到精确度的控制,而等效采样率为Dfs,与输入信号无关,当输入信号的重复频率偏离式(2)中所给的值,等效采样度变最大时间偏差为:
d.jpg
等效于展宽了频带,此时频带的宽度与A/D转换的速度和微处理器的速度几乎无关,用这种方法结合设计的示波器,较容易地测量高频信号的频率和幅值。
最后,把采样得到的数据进行存储,然后进行统一的分析,复现出信号的函数曲线,可计算得到幅值。
由于在设计过程当中对电压信号采样分析采用的是等效方式,采集到的是以时间为自变量的离散序列,这些采样数据反映了被测参数的变化过程,但带有一定程度的误差,势必会引起采集数据失真的现象。为了避免非误差允许范围内的值对测量结果造成干扰,采用软件对测量结果进行曲线拟合的方式对数据进行修正,以保证测量结果的相对精度。
3.2 显示分辨率计算
设计的波形显示窗口一共有354x446像元素,能满足设计要求,统一分析采集的数据,采用正弦内插算法进行处理,形成相应的输出,复现被测信号波形。


评论


相关推荐

技术专区

关闭