新闻中心

EEPW首页>电源与新能源>设计应用> 便携式电子装置电池的充电管理

便携式电子装置电池的充电管理

作者: 时间:2011-02-20 来源:网络 收藏

4 BQ2000的工作原理

Ni-Cd,Ni-MH及Li-Ion电池需要精确控制最大化学电池容量,又要防止过量充电,因为,过量充电会减小电池的使用寿命,而且会对终端设备造成物理伤害。针对这种情况,BQ2000是这样做的,首先由振荡器和内部振荡器共同作用到时钟脉冲发生器,产生时钟信号,用来控制数/模转换、-ΔV运算器及其它有关单元电路,并使之同步工作。对于电池充电电压的采样,BQ2000在瞬间中断充电电流期间进行采样,以求采样的精确。采样电压从脚4(BAT)进入电路内部,经模/数转换后送入-ΔV运算器处理。并将运算结果送入充电控制单元,随时控制充电过程,经每秒成千上万次采样、运算、控制,使其达到精确控制的目的。

在充电初始阶段,BQ2000通过监视电池的电压来检测电池的化学结构,一旦确定了化学结构,立即用适当的算法确定符合该化学结构的控制方法。这个过程排除了欠充电和过充电情况发生。BQ2000使用的基本充电方法,视电池的化学结构而异。对于Ni-Cd和Ni-MH电池而言为峰值终结法,而对Li-Ion电池来说却是最小电流法。为了充电安全,电路内部设置了一个可供用户编程的充电定时器。通过定时器也可以用最大时间法终结充电。

另外,为了确保安全,在电池的电压和温度未达到预先确定的或用户规定的阈值之前,BQ2000禁止快速充电。对于Ni-MH电池来说,该集成电路还提供一种可选充电,即补足充电模式,以使电池容量达到最大。

BQ2000的集成高频功率变换器可用做效率大于90%的开关型设计,此特性与精密内部基准一起使BQ2000成为低功耗高精度充电器的理想解决办法。

5 充电过程分析

5.1 镍镉和镍氢的充电管理

充电管理流程图如图3所示。在一个典型的充电循环中,镍镉和镍氢电池首先必须进行检测以确定当前电池的状态,正常时方可进行快速充电。若电池的温度和电压在允许的范围之外,为了确保安全,BQ2000会自动拒绝快速充电。当电池温度超过45℃时,充电被挂起,直到温度降低。而当电池温度低于10℃或单节电池电压低于1V的严重亏电电池,则要先进行小电流充电,待温度和电压正常后,方可进行快速充电。以上措施,可有效地延长电池的寿命。

图3 充 电 管 理 流 程 图

快速充电开始后,设置一段时间为PVD检测封锁时间,此段时间在本充电器中设计为300s,在此段时间内,不检测电压负增量,这是由于给某些旧电池进行充电的初期,电池端电压不仅不升反而降低,从而导致充电器过早地停止工作。

PVD终结检测方式对原先采用的-ΔV检测方式作了一些改进,-ΔV检测时,当单节电池的电压比最高充电电压降低12mV时快速充电才会终止,而PVD则将其改为4mV/每节,这样就有效地避免了过充的发生。镍基可充电电池通常采用不大于1C的恒流充电。对镍基可再充电电池来说,快速充电可根据电压或温度来终结。图4所示的是一种典型的电压法,即峰值电压检测法。可以看出,在电池的电压峰值为每节0~4mV范围时,快速充电终结。温度终结法即电池温度上升率,典型的比率为1℃/min,如图5所示。

图4 峰 值 电 压 终 结 法

图5 温 度 变 化 率 终 结 法

充电速率为1C或0.5C时,快速充电终结后,电池有可能还没有真正充足电,为了适应电池的这种化学特性,本充电器具有补足充电程序,补足充电的平均充电速率定为快速充电速率的1/18。

在快速充电或补足充电完成之后,则转入脉冲涓流充电,它的作用是补充电池因自放电而损失的电量,此过程通常被称为维护充电。充电速率一般定为快速充电的1/32。只要电池未取出,这种维护充电就一直进行下去。

5.2 锂离子电池的充电管理

与镍镉和镍氢电池一样,锂离子电池在快速充电前也必须进行电池状态认定和可能的状态处理。但是,锂离子电池的充电算法却较为复杂一些,典型情况下,这种电池首先用1C或小于1C的恒定电流充电,一直充到其容量的70%~80%,然后改用恒压充电,恒压一般限定为每节4.2V。

锂离子电池充电电压严格要求的原因有两个,其一,是为了把电池容量充到最大而不损坏电池,如果充电电压低,虽然不损坏电池,但难于充至最大容量,降低了电池的放电容量;其二,如果充电电压过高,在充电过程中可能损坏电池组内部电压保护器。



关键词:

评论


相关推荐

技术专区

关闭