新闻中心

EEPW首页>模拟技术>设计应用> 如何解决运放振荡问题

如何解决运放振荡问题

作者: 时间:2013-01-01 来源:网络 收藏

事实上,就纯粹的而言,pH只在0dB线之下不远的位置。与po类似,由于gmRsample的增益作用,pH也有可能浮出0dB线,从而使Aopen与1/F的交点斜率差为40dB/DEC,引起振荡。

pH的位置比po低,因此gmRsample的增益必须更高才能使电路由于pH而产生振荡,然而gmRsample由于datasheet中没有完整参数,实际上只能大致预测而无法精确计算。因此必须采取一定措施避免pH的作用。

如前所述,零点可以矫正极点的作用,但有一个条件,除非将零点/极点频率降得很低或升得很高,使其位于远离1/F的位置。

pH距离0dB线过于近,而且是的固有极点,想通过前面类似的方法转移极点位置很不容易。

如果1/F的位置改变,远离pH,就能轻易解决pH的烦恼。然而1/F决定了电路的输出电流,不能随意更改。

但如果1/F的DC值不变而高频有所提升,应该可以——这就是噪声增益补偿。

噪声增益补偿方法来自反向放大器,使用RC串联网络连接在Vin+和Vin-之间。这种方法不建议用在同向放大器,但也不是绝对不可以,只需将RC串联网络的Vin+端接地,并在Rsample上的电压反馈到Vin-之前串联电阻RF即可。


这个电路在功放里很常见,目的是降低DC误差,但不影响高频响应。此处的作用在于为反馈系数F提供一对极点/零点,从而使F的高频响应降低,即1/F的高频响应增强,实质上使F成为一个低通滤波器,对应1/F为高通滤波器。


F中的极点和零点在1/F中相对应为零点zc和极点pc,zc=1/2pi(RF+Rc)Cc,pc=1/2piRcCc,两者之间的增益差为1+RF/Rc,从而使pc之后的1/F提升了1+RF/Rc,使1/F远离pH。

显然,1+RF/Rc越大,zc和pc频率越低,1/F越远离pH,系统越稳定,但也会出现致命的问题——瞬态性能下降。

如果电流源输入端施加阶跃激励,电流源系统输出端会产生明显的过冲振荡,而后在几个振荡周期后进入稳态。

原因在于阶跃激励使迅速动作,MOSFET栅极电压迅速增大,输出电流Io增大,但体现在Rsample上的采样电压IoRsample受到噪声增益补偿网络F的低通作用,向运放隐瞒了IoRsample迅速上升的事实,即反馈到Vin-的电压无法体现运放的输出动作,从而造成超调振荡。

虽然超调振荡不是致命的,由于足够的阻尼作用,它总会进入稳态,但超调造成的输出电流冲击却很容易摧毁脆弱的负载,因此仍然不能容忍。

适可而止,如果1+RF/Rc=2,就给gm的增大提供2倍空间,考虑稍适过补偿原则,1+RF/Rc取3是合理的,对应产生3倍gm变化的电流增量至少需要10倍,足矣。

即使如此,阶跃响应仍有一些很小的过冲,将在后面解决。

直流性能是不受影响的。

实际RF=1k Ohm,Rc=470 Ohm,Cc=0.1uF,zc=1kHz/0dB,pc=3kHz/9.5dB。

(补充:上一节中的Rs=3.9k Ohm,Cs=0.1uF,po=400Hz,zo=400Hz,由于无法编辑,补充于此)

本次增加成本:

1k Ohm电阻 1只 单价0.01元,合计0.01元

470 Ohm电阻 1只 单价0.01元,合计0.01元

0.1uF/50V电容 1只 单价0.03元,合计0.03元

合计0.05元

合计成本:9.51元



关键词:如何解决运放

评论


相关推荐

技术专区

关闭