新闻中心

EEPW首页>模拟技术>设计应用> 高速应用中电流反馈运放电路

高速应用中电流反馈运放电路

作者: 时间:2012-07-11 来源:网络 收藏

电路板的布局

一般来说,在放大器或高速器件的应用中,要仔细考虑的事情之一就是电路板的布局设计。表面安装的陶瓷电源旁路电容要非常靠近该器件,典型距离小于3mm。如果需要更大的电容,可以在电路板上较远的地方布置电解电容。电路板上常常有电压调节器,这时,在电压调节器供应商推荐的电解电容之外,不必要采用额外的电解电容。

布置在放大器附近的小陶瓷旁路电容为放大器的高频响应提供能量。根据放大器的速度和被放大的信号速度,可能要采用两个数值大约相差10倍的陶瓷电容。例如,一个400MHz的放大器可能采用并连安装的0.01uF和1nF电容。

当购买电容时,核查其自谐振频率至关重要,自谐振频率在此频率(400MHz)上下的电容毫无益处。地和电源层有助于为地电流和电源电流两者提供低的阻抗路径,在放大器的输入和输出引脚以及反馈电阻的下面,要避免走地和电源层,这样做有助于通过减小不想要的寄生电容来维持放大器的稳定性。

要在可能的地方尝试采用表面贴装器件,这些器件提供最佳的性能并占用的电路板空间也最小。电路板的布线应该保持尽可能地短,并应该调整其长宽以最小化寄生效应。在电源布线上,最坏的寄生特性是直流电阻和自感,所以电源布线要尽可能地宽。另一方面,输入和输出连接线常常承载非常小的电流,所以容性寄生效应对它们的危害最大。对于超过1cm的信号路径,最好采用受控阻抗和两端终接(匹配电阻)的传输线。

因为无法避免小量的寄生负载,放大器的反馈电阻为特殊应用提供调整放大器性能的灵活性。面对真正具有挑战性的电路板设计,即使采用非常大的反馈电阻可能也是不够的。

驱动容性负载

1.jpg

图4:利用串联输出电阻实现对容性负载的隔离

如图4所示,通过引入一个电阻(ROUT),放大器几乎可以驱动任何大小的电容而没有稳定性问题。这是电压和电流两种反馈放大器常用的技术,当驱动高速模/数转换器时,该技术特别有用。ROUT电阻被放置在运放和容性负载(即ADC)之间。只要电路板空间允许,要把电阻靠近放大器放置。

图5:LMH6738推荐的ROUT与容性负载的对比

在图5中,图表上的曲线显示了根据电容大小建议的ROUT电阻数值。该图表是根据1kΩ的阻性负载绘制的。如果RL的数值较小,ROUT也可以更小。另一个选项是把ROUT放在反馈环之内(图中没有标出)。你可以把RF连接到隔离电阻的输出侧,而不是图中ROUT和放大器之间用RF连接。这样做将保持增益的精度,但是跟在其它例子中一样,你将仍然在隔离电阻上损失相同大小的电压摆幅。尽管该技术确实有其缺陷,但应该这样实现。

因为电阻和电容形成一种低通滤波器,对于这种电路的应用,存在某种带宽的损失。实际应用表明,无论电阻阻值多大,电容越大就越难驱动,并降低带宽。

降低系统噪声

如果你正在构建一种IF放大器或低频RF放大器,那么把噪声最小化就特别重要。利用放大器,增加反馈电阻常常能减小系统的噪声,这是因为频率响应衰减得比电阻噪声的上升要快。

为了减小跟随放大器电路的那部分噪声,非常重要的一点是仅仅采用必需的带宽,而不要选用超过应用需求的带宽。除了采用反馈电阻的最佳数值之外,你可以给电路添加附加的滤波电路。

利用Sallen-Key滤波器拓扑,滤波器常常可以被恰当地合并到放大器的反馈网络中。如果可能的话,交流耦合将有助于消除低频噪声,那常常就是所谓的1/f噪声,目标是滤除在你的放大带宽之外的所有噪声。从系统的层面考虑,要求在电路中尽早布置最低噪声和最高增益的模块。你提高增益越早,其后噪声对你的信号的影响就越小。如果可能的话,要避免大的信号源电阻,电阻增加的热噪声与电阻值成正比。

电压反馈放大器的优势

如果比较电流反馈和电压反馈两种放大器,你会发现电压反馈放大器在某些方面可能具有一定优势。利用电流反馈拓扑,输入偏置电流并没有系统地匹配。正相输入比反相输入阻抗更大—通常具有更低的输入偏置电流。反相输入偏置电流通常将比较大,如果偏置电流必须流过大阻值的电阻的话,这样做可能导致输入电压的偏移。

在电流反馈器件上的偏移电压可以被匹配并使之相当小,但从系统的观点看,它们不可能完全为零。所以,虽然典型的电流反馈放大器的偏置电压可以被设计得非常好,但是它将随着正常的工艺批号及温度而变化比较大。如果需要非常高精度的输入偏置电压,那么电压反馈放大器通常是比较好的选择。

电流反馈放大器的缓冲器配置需要一个反馈电阻,而电压反馈放大器可以采取直接短路连接。这样做通常没有问题,除非在设计中取代现有的电压反馈放大器。最后,在电流反馈放大器的反馈环路中,电容会引起不稳定性。一些常用的电路拓扑不适合于电流反馈放大器,对于大多数这些电路,需要重新设计电路板,以使之满足电流反馈放大器工作的要求。

更多资讯请关注:21ic模拟频道


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭