新闻中心

EEPW首页>模拟技术>设计应用> 预测和负延迟滤波器:你应该知道的五件事

预测和负延迟滤波器:你应该知道的五件事

作者: 时间:2012-06-04 来源:网络 收藏

1.jpg
图3:某些数据(蓝色),巴特沃斯响应(粉红色)和补偿(绿色)

我们不必使用相同的函数H来构造补偿滤波器。如果两个传递函数HA和HB都具有整体单位DC增益和相同的DC组延迟值,则H1 =HA(2-HB)也有整体DC增益和零DC组延迟。

特别是,如果HB是T值的纯时间延迟(相等于HA的DC组延迟),我们可以得到FIR实现的漂亮简化。就T恰好等于N个采样周期的传递函数来说,我们得到H1 = HA(2-Z^- N),几乎所有的数字滤波器结构都能很容易地实现它,因为Z图的

这些负值直接作用于单位采样延迟。而2N+1阶的对称FIR滤波器总能满足该条件;如果多做点工作,它就可以适应不对称的情况,其中N不是整数。

因此,无论我们选择工作在S域或Z域,我们都可以构建零DC组延时的低通传递函数。但我们没必要在零组延时停止;虽然我们可以很容易地使其为负,我们也在此进入预测域。在采样系统中,有一个其输出是输入信号在下一个采样时刻可以预测的滤波器,会很方便。换句话说,一个滤波器的DC组延迟是负一个采样周期。在上面提到的FIR的情况,它简单得几乎难以置信。我们只须使用2-z^-(N+1),而不是2-z^-N的补偿函数。

现在,如果在有能量进入滤波器之前,它就实际输出了一些能量,那就破坏了因果律。所以包含信息的任何信号不可能以负延迟的形式出现在输出。但有些信号不包含任何信息——如果一些观察家对其有心理上的期盼,则无论他们怎么想

——所以当组延迟为负时,就没有因果关系可去违反。

这种滤波器的表现如何?

这些功能有个有用的属性。显然,对常数(即DC)输入,输出电压等于输入,与普通低通滤波器的一样。但现在当输入以恒定速率变化时,输出也可以等于输入。与“标准”低通传输函数不同,在阶梯变化激励下,滤波器的输出和输入信号间没有“滞后”。我们设计另外一个例子,并更加仔细地检验其属性。

这次,我们以FIR为例。我们HA的起始滤波器是一个对称的9阶FIR滤波器,(因此有4个采样周期的恒定组延迟)。这是为陷波60Hz左右有不小变化的AC线频而设计的。我会解释理由,且在以后的Filter Wizard中,明确如何设计这样一款“拨空号(dial-a-null)”滤波器,但眼下,我们只是看一看。对于我们的HB,为得到零,我们使用了4个采样周期的简单延迟。这使2-HB看起来像一个系数为(2,0,0,0,-1)的5阶FIR滤波器。级联的HAHB做成一款单一FIR滤波器,将两个Z平面序列卷积在一起,获得一个13阶的滤波器。HA和HAHB的幅度和组延时如图4所示,这次是用LTspice仿真的。图中,有相当奇怪的频率和时间,是因为这个滤波器是按工作在220个采样/每秒设计的。再次,我们得到一个凹凸不平的通带并失去了一些阻带响应。

现在,我们可以进入预测领域。如果我们把HB‘的延迟设为5个采样周期而不是4个,然后重新计算该级联(现在是14个阶递),我们得到的HAHB如图4(绿色线段)所示。与期望的一样,现在,你可以看到DC组延迟是负4.5ms左右。

2.jpg
图4:FIR例子,正延迟和负一个采样周期的情况

那么这里回报是什么?好,我们看看时间域的行为。三个滤波器的激励源都是上升又下降的三角形信号。激励和响应如图5所示。

3.jpg
图5:无补偿和有补偿FIR滤波器对三角波激励的响应

由最初的低通滤波器HA引起的“滞后”显而易见。如果你试图检测信号通过某些极限点的哪个点,你会清楚地体验到在检测响应时的延迟。HAHB线段显示我们零DC组的输出——它具有零延迟!这突显了对于一般低通滤波器来说极为重要的一个事实:这种滤波器的输出和输入之间的斜坡滞后在数值上等于DC组延迟值。因此,如果我们补偿滤波器的设计,使DC组延迟为零,我们就得以消除滞后。当然,代价总是有的,我们可以看到,在输入波形斜坡发生突变后,这种滤波器有些疲于应付。

如果你放大HAHB曲线,你会看到,每个新采样都正好在输入斜坡曲线上。预测版本HAHB的输出值移动到斜坡将在下一个采样周期开始时该有的那个值,我猜,会与我们预测的一样。

这种滤波器可在哪里派上用场?

有许多工业监测应用,其“正常”行为意味着信号稳定(但嘈杂,信号可以是温度、压力、物理结构内的应力等)。 所谓“异常”行为,是指一些被测的系统参数变得不可控,并不按规矩“出牌”。

在反馈路径需要滤波的控制系统,这种零延迟类型的滤波器很有用。消除很低频率下的组延时,可以显著增加抑制这些频率上某些感知行为的控制回路的功效。工程师习惯于操控系统传递函数的零以强迫实施所需的回路行为,这正是我们在此以更具分析的意蕴所做的。我们的传递函数算法生成取消极点DC组延迟特性的零。我已经说过,不是吗!

这种零或负通常还用来处理非电子信号。例如,如果一种金融工具(如股票)的价格被认为呈斜坡线性变化,但该斜坡被短期交易噪声破坏,零延迟滤波器就可用于有效地提取基本行为。虽然,如图5所示,当三角形改变方向时,你可以从滤波器的行为进行推断,但一段时间内,这种滤波器会给出极不准确的结果,直到价格行为再次按平稳的斜坡变化。图3的神秘数据,事实上是个股票价值序列。

这些金融工具的交易员实际上对其价格数据序列使用了一些相当复杂的滤波流程。我常常被告知,若电子市场股价暴跌,在金融部门,滤波器向导肯定会有份工作,用来从巨大的价格数据集中梳理出有趣信号。但让我们绕过暗礁险滩,戴上安全的坚固工程的护身符,并重回正轨!

诸如此类的延迟操控可以大有作为的一个工程应用是补偿数字D类放大器的电源电压变化。对于给定的分度:间隙因数由输出开关输出,其放大器的平均输出电压与电源电压成正比——即,它没有电源抑制。当人们似乎不想在消费类音频设备的电源上下大本钱的时候,这并非好事。



关键词:延迟滤波器

评论


技术专区

关闭