新闻中心

EEPW首页>模拟技术>设计应用> 基于FDS地铁火灾烟气蔓延数值模拟研究

基于FDS地铁火灾烟气蔓延数值模拟研究

作者: 时间:2012-05-31 来源:网络 收藏

2.2 燃烧模型
火灾过程几乎都是湍流燃烧过程,火灾中的燃烧可能是扩散燃烧也可能是预混燃烧。在火灾动力学模拟中,采用的湍流燃烧模型有混合组分燃烧模型和有限化学反应速度模型。混合组分燃烧模型假定系统为:燃烧单步不可逆反应的简单化学反应系统,即燃烧反应可以简单表示为:
f.jpg
如果只关心火灾过程的热效应,该模型是简单实用的;若需要研究了解火灾过程中污染物和有毒有害气体的产生,则需要引入包含这些物质产生机理和速率的有限化学反应模型。对于一般碳氢化合物燃烧反应可表示为:
g.jpg

3 西安2号线火灾动态烟气蔓延
3.1 火灾场景及模型参数设定
本文将燃烧火源处理成一个燃烧面积固定的火源。另外,由于研究的是隧道内烟气的动态蔓延过程,故不考虑火灾燃烧物的构成比例以及化学反应引起烟气成分的变化。隧道采用入口纵向通风,风速为2.5 m/s。以下参考Ingason.H给出的几种火源热释放率模型,并结合各国所给出不同火灾规模对应的热释放率火灾规模值,本文的仿真实验将火灾场景分别设为30 MW,100 MW的燃烧进行动态模拟,所取的值应是合理的。
以上几种数学模型中,由于线性模型直观明了,反应了火灾变化的整个过程,但线性热释放率对应的火荷载(热释放率函数对时间求积分即热释放率曲线和坐标轴围成的面积称之为火荷载)与实际的火荷载偏差较大。指数增长模型给出了不同控制条件下热释放率的数学模型,但是这些模型比较复杂,且模型里未定的参数较多,不易选定。Ingason.H给出的平方增长模型,即增长段采用平方函数;稳定段为常值;衰减段为指数函数,形式简单,容易确定。
3.2 30 MW和100 MW热释放率火灾烟气蔓延过程
30 MW火源平方增长模型:
h.jpg
30 MW和100 MW的热释放率曲线如图1所示。

本文引用地址://m.amcfsurvey.com/article/186324.htm

i.jpg


不同火源在相同风速下持续时间如表2所示。

j.jpg



关键词:FDS地铁数值模拟

评论


相关推荐

技术专区

关闭