新闻中心

EEPW首页>模拟技术>设计应用> 可编程时脉发生器CY22150及其应用

可编程时脉发生器CY22150及其应用

作者: 时间:2010-09-15 来源:网络 收藏

作为服务器件使用时,其地址是69H(1101001),内部所有寄存器的地址和寄存器的值都是8 Bit。内部有11个可控制的寄存器,其使用主要是这些寄存器的配置。寄存器设置参见文献。它们分别是时钟使能寄存器(09H),Bank1分频控制寄存器(0CH),输入晶振控制寄存器(12H),输入负载电容控制寄存器(13H),电荷泵及PB计数器寄存器(40H,41H),P0、Q计数器寄存器(42H),交叉点开关矩阵控制寄存器(44H,45H,46H),Bank2分频控制寄存器(47H)。
以下结合式(1)说明使用中比较重要的寄存器的配置:
1)参考频率(REF) REF可以是晶振产生的,也可以是外部驱动频率。若由晶体产生,REF的范围是8~30 MHz,若为外部驱动频率,REF的范围是1~133 MHz。与REF的设定相关的Bit是输入晶振控制寄存器(12H)的4、5位,其具体设定与REF的范围及晶振属性有关,具体如表2和表3所示。

本文引用地址://m.amcfsurvey.com/article/187796.htm


2)Q计数器 Q计数器的值是由PO、Q计数器寄存器(42H)的低7位确定的,Qtotal的计算由式(4)决定,其范围是2~129。

在具体的使用中,为了保证CY22150稳定工作,REE/Qtotal的值不可高于250 kHz。
3)P计数器 PLL的输出频率是由Q和P共同决定的,Ptptal由PB和PO这2个内部变量决定,计算由式(5)决定。

PB是一个10 Bit的变量,由寄存器40H的低2位和41H的全8位决定;PO是一个1 Bit的变量,由寄存器42H的最高位决定,它的引入确保了PB是整数,当Ptotal是奇数时,PO为1,Ptotal是偶数时,PO为0。
Ptotal的可用范围是8~2 055,为了确保CY22150稳定的工作,(Ptotal(REE/Qtotal))应该在100~400 MHz之间。为了使PLL稳定工作,Ptotal的范围规定为16~1 023,在具体的应用时Ptotal不同,寄存器40H的4..2设置不同,其设置与Ptotal的值有关,如表4所示。


4)时钟输出的设置 VC0的输出被接到两个多控开关,最后的时钟输出由两个分频板决定。分频的选择共有以下几种:/2,/3,/4,/DIVxN,其中DIVxN是可变的。两个多控开关(DIVlSRC和DIV2SRC)决定最后的输出时钟是由哪个分频板得到的,DIV1SRC的控制位置为0是表示选通了Bank1,DIV2SRC的控制位置为0是表示选通了Bank2。每一个时钟输出都可以是7种频率源之一,CLKSRC(2..0)交叉开关矩阵的设置决定最后的时钟输出,相应的控制位在交叉点开关矩阵控制寄存器(44H,45H,46H)中设定。时钟输出由时钟使能寄存器(09H)的低6位决定,控制位为1,表示该输出被选定。

2 典型应用
2.1 硬件电路

CY22150的应用电路如图3所示(机顶盒电路的一部分)。该电路为XC3S1400AFG676型低成本的Spartan_3AFPGA器件,提供时钟信号,根据FPGA工作的需要提供不同频率的时钟。CY22150输入信号是12.5 MHz(引脚1),输出时钟是LCLK1(引脚7)、LCLK2(引脚8)、LCLK3(引脚9)、LC LK4(引脚12)分别接XC3Sl400AFG676的IO_L28P_2/GCLK2(52引脚)、IO_L28N_2/GCLK3(51引脚)、IO_L27P_2/GCLKO(50引脚)、IO_L27N_2/G CLK1(49引脚),这8个引脚的连接保证CY22150为XC3S1400AFG676提供工作时钟。CY22150的I2C数据输入(引脚4)接XC3S1400AFG676的IO_L29N_ 2(53引脚),CY22150 I2C时钟输入(引脚15)接XC3S1400AFG676的IO_L29P_2(54引脚),这4个引脚的连接保证电路控制数据、工作时序的一致。图3中“×”表示该引脚没有连接。


在该电路中,XC3S1400AFG676需用4个时钟接口,CY22150有7个可用的时钟输出。采用CY22150,一个可提供电路需要的4个时钟(如果采用ICD2053,只有1个时钟输出的),这样降低了开发成本,缩小产品的体积,对一个控制就可同时产生电路所需的4种不同频率,操作简单。在电路的设计中,保证电路稳定工作,在接地和接电源处要接不同电容值的电容或者不同阻值的电阻来减小干扰。
2.2 软件设计
在该应用中,主要实现对CY22150的写控制。写控制的主要过程描述如下:产生开始信号,写器件地址及写控制位,ACK响应,写寄存器地址,ACK响应,写寄存器的值,ACK响应,产生停止信号。其状态转换图如图4所示。整个过程中,关键是实现相应寄存器的写,以下程序实现的是某一寄存器的写,其他寄存器的写过程与之相似。

分频器相关文章:分频器原理
晶振相关文章:晶振原理
锁相环相关文章:锁相环原理


评论


相关推荐

技术专区

关闭