新闻中心

EEPW首页>模拟技术>设计应用> 宽带放大器的设计方法以及仿真和实测

宽带放大器的设计方法以及仿真和实测

作者: 时间:2010-05-11 来源:网络 收藏

  表1:PHEMT分布式放大器在3.3V电压和25mA电流偏置下的各项指标实测结果。

  图6和表1是整个电路的实际测试结果。可以看到在3.3V的24mA直流供电下,该电路达到了10%的功率附加增益PAE(Power Added Effeciency)以及+10dBm的输出功率。噪声系数的实测值和值也很接近(图7),在5到6GHz频段,噪声系数仅为2dB,这在具备1~10GHz的10倍频程(decade)带宽的电路中算是很出色的表现了。54平方密尔(mil-square)的芯片上还放置了很多其它器件,包括一个设计中采用的6×30μm增强型PHEMT测试建模管。在3V和3.3 V电压下,8~9mA电流时,分别测试了这个模型管,并将其S参数用于电路进行二次。图8为该PHEMT模型管的版图。图9和图10则是针对测试管的实测和数据的比较。由于测试的参考面不同,测试模型管的寄生参数和实际电路中使用的晶体管有微小的区别,正是这些巨别导致了测试值和再仿真结果(使用ADS和Sonnet软件)在高频段有一些差别。对以单独的6×30μm模型管而言,其实测值和使用TOM模型的ADS仿真值非常接近。

  图7:使用噪声分析仪测试的增益和噪声系数,和ADS仿真的结果对比。

  图8:6×30μm栅宽的增强型PHEMT测试建模管的版图。

  图9:实测的(蓝色)增强型PHEMT测试建模管的前向传输参数S21和仿真结果(红色)的对比。

  MMIC建模非常复杂,例如,在仿真时是否可以忽略互连线的影响。忽略互连线可以极大的简化设计,而且在2.4GHz以下,互联的影响很小。通常这些互联微带线的模型都是在其长度超过几倍衬底厚度的情况下建模的,而实际MMIC设计中很少会发生这种情况。典型的微带线模型一般都会高估其长度(即电感)效应。另外,还要考虑是否需要一个电磁仿真,以确保原始设计中忽略的寄生参数不会有太大的影响。除非设计者确实想压缩版图面积,否则采用3到5倍的线宽(而不是3到5倍的衬底厚度)做为元件间隔,一般都不会有问题。



评论


相关推荐

技术专区

关闭