新闻中心

EEPW首页>模拟技术>设计应用> MAX262滤波器在地下金属管线探测仪中的应用

MAX262滤波器在地下金属管线探测仪中的应用

作者: 时间:2009-07-16 来源:网络 收藏

2 基于的多频点切比雪型夫带通的设计
2.1 设计原理
从实际情况综合考虑,四阶切比雪夫型带通即可满足系统设计要求,所以将内部的两个二阶的组件级联组成四阶切比雪夫型带通滤波器。由文献[1]知,四阶切比雪夫型带通滤波器的传输函数为:

本文引用地址://m.amcfsurvey.com/article/188822.htm

式中:B和C是文献[1]中附录A给出的相应低通系数。式(1)可以分解成以下两个二阶函数:


式中:K1,K2分别是两个二阶系统的级联增益,并且K=K1 K 2。式中:


因此只要给出滤波器的中心频率和品质因数,选择适当的滤波器系数,即可得到所需的滤波器输出响应。
2.2 在金属管线探测仪中的实际应用
探测中,小于1 kHz的信号有利于远距离追踪和大直径管线的探测,但容易受到外界干扰,且不易感应到小口径管线上。而大于80 kHz的信号容易感应耦合到管线上,但探测距离小,不利于远距离追踪。综合考虑,在探测仪中,用到了400 Hz,8 kHz,30 kHz,60 kHz,80 kHz,120 kHz等几个频率点,所以在金属管线探测仪的接收机部分,其滤波器的中心频率必须包含以上几个频率点。然后根据给出的带通滤波器的通带宽度、中心频率和衰减限度,即可计算相应的滤波器设计参数。
2.2.1 硬件设计
在探测仪的接收机中,通过单片机AT89C2051改变的控制字及工作方式来实现不同频点的切换。在要求硬件电路尽量简单的前提下,通过对晶振分频来产生不同滤波器输入时钟。滤波器设计的硬件电路如图2所示,整个系统时钟由8 MHz的晶振XTAL提供。通过74F161分频可以得到4 MHz,2 MHz,1 MHz的时钟。在接收低频信号时,通过AT89C2051来自定义合适的滤波器输入时钟。由P3.4和P3.5控制74F153来选择滤波器输入时钟。MAX262的4位地址线和2位数据线分别连接到AT89C2051的P1口的P1.0~P1.5。写允许输入端WR连接到P1.7。将MA.X262内部的两个二阶滤波器组件进行级联,并使用MAX262自带的独立放大器将输出端的信号进行适当的放大。在电源部分,用旁路电容将V-和V+连接到地(一般电解电容为4.7μF,陶瓷电容为O.1μF)。这些电容应尽可能放置在靠近电源引脚的地方。

2.2.2 软件设计
根据滤波器中用到的各个频率点,给出相应的滤波器截止频率和衰减限度,再结合文献[2]计算出各个频点相应的滤波器编程系数。需要注意的是,有源滤波器的中心频率f0和品质因数Q都是有限的,所以应保证计算出来的中心频率f0和品质因数Q都在可实现的范围内。
在设计滤波器时,需把MAX262内部的两个二阶滤波器组件串联起来,组成四阶切比雪夫型带通滤波器。在级联过程中,为了使整个滤波器的输出噪声较低,把具有最高品质因数Q的组件放在第一级。参考文献[2]及滤波器中心频率f0来选择滤波器的输入时钟CLK和品质因数Q。最后,利用MAXIM公司提供的相应滤波器设汁辅助软件来对参数进行适当的调整,使设计结果达到最佳。调整后的第一级滤波器组件的各个频点的设计参数和相应的编程系数如表1所示。



评论


相关推荐

技术专区

关闭