新闻中心

EEPW首页>模拟技术>设计应用> 一种大电压输出摆幅低电流失配电荷泵的设计

一种大电压输出摆幅低电流失配电荷泵的设计

作者: 时间:2009-05-15 来源:网络 收藏

式中:△Ton为充放电电流源同时打开时间;Tref为参考时钟信号周期;△i为的失配电流;Icp。为充放电电流;△td为开关延时时间。式(1)表明,在参考频率固定时,可以通过减小失配电流和缩短开关同时打开时间来诚小输出信号的相位误差,而△Ton需要用来克服PFD的死区,因此,充放电电流的匹配程度对电荷泵的主要性能影响很大,提高充放电电流的匹配特性在设计电荷泵时需要着重考虑。

本文引用地址://m.amcfsurvey.com/article/188910.htm


2 新型电荷泵设计
图3为本文提出的新型电荷泵结构,其中M1~M12构成一个一级的轨到轨运算放大器,M1和M2构成这个运算放大器的P管输入极,M3和M4构成N管输入级,M7~M12构成运放的电流求和电路,将差分输入产生的小信号电流转换成单端的输出,M15~M18构成这个运算放大器的第二级,M16的漏极接到:M1的栅极构成单位负反馈,因此可以保证M。和M2的栅极具有相同的,也就是说M15和M19具有相同的漏极,M17和M21也具有相同的漏极电压。M15和M18的栅极分别接到最低电位和最高电位,使这两个管子都工作在深线性区,所以M15~M18这条支路始终有电流,电流大小为:


这个电流并不受UP和DN的信号状态影响。A,B在UP和DN同时为低电平时分别为高电平和低电平,否则为低电平和高电平。假设:

下面分析这个电荷泵的四种工作状态:
(1)状态1:UP为高电平,DN为低电平,电荷泵为LPF充电开关管M20打开,M22关闭。由于运算放大器的存在,M15和M19的三个端口都处在相同的电位,因此I19=aI15电荷泵以aI15大小的电流对LPF电容充电。
(2)状态2:UP为低电平,DN为高电平,LPF通过电荷泵放电开关管M20关闭,M22打开。由于运算放大器的存在,M17和M21的三个端口都处在相同的电位,因此I21=aI17泵以aI17大小的电流对LPF电容放电。
(3)状态3:UP,DN同时为高电平,LPF输出电压保持稳定开关管M20,M22同时打开。在正常工作状态下,因为运放的存在,使得I21=aI17,I19=aI15,而I17=I15,因此I21=I19。M19中的电流全部从M21中流到地,因此LPF电容电压保持不变。
(4)状态4:UP,DN同时为低电平,LPF输出电压保持稳定开关管M20,M22同时关闭,此时A,B分别为高电平和低电平,控制开关管M21,M22同时打开,因此M19和M21的漏极电压都为LPF上的电容电压,克服了电荷共享。
本结构还可以轻易地实现充放电电流的数字控制,如图3框内所示,假设:


则可以通过2个比特控制充放电电流的三种可能(另一种充放电电流的可能为0 mA),分别为:aIref,βIref,(α+β)Iref,这在PLL的设计中具有实际意义,因为充放电电流的大小直接影响PLL的带宽口,因此可以根据实际情况调整电荷泵的充放电电流来调整PLL的带宽,实现带宽可数字控制的PLL系统。



评论


相关推荐

技术专区

关闭