新闻中心

EEPW首页>EDA/PCB>设计应用> 滤波电感在电源抗干扰中的应用分析

滤波电感在电源抗干扰中的应用分析

作者: 时间:2012-04-04 来源:网络 收藏

本文引用地址://m.amcfsurvey.com/article/190549.htm

代入上式

于是可以得到:

通过上式把磁学参数与电学参数直接联系起来。它表示磁性材料的磁性参数在电路中充当的角色。式(1)表述电路中的电感直接与磁材料的弹性磁导率μ′有关,表示器件的储能大小与频率无关的纯电感性。而电路中电阻R与磁性材料复数磁导率的虚数部分μ″有关。式(2)则既与材料的涡流损耗、磁滞损耗及剩余损耗等有关,并且与频率也有关。反映在电学上就相当于等效电阻R。最后都转变成器件的热能散发到空间,而EMI滤波器中的电感能够滤去干扰信号就是利用了磁性材料的这一特征。从另一个角度看,EMI发热是正常的,只要不影响电路的正常工作就行了。图2是滤波器电感在串联等效电路中R与频率关系曲线。相当于电感的插入损耗曲线。在低频段即fEMI滤波器可分为共模抗干扰滤波器和差模抗干扰滤波器。因此对的磁性能要求完全不同。现简述如下:

Yz2.gif (6591 字节)

图2插入损耗与频率关系

Yz3.gif (9058 字节)

图3不同磁性材料的频率与阻抗曲线

表2不同磁性材料磁性能对比

μ0(×104) L(mH) ρ/(Ω.m)
I1J8510.02mm 3 25 60
Ⅱ超微晶 4 35 140
Ⅲ国产铁氧体 0.8 4.2 >105
Ⅳ进口铁氧体 0.5 3.4 >105

(1)共模材料的选择共模电感线圈如图1中Lc1,Lc2是绕在磁环上的两只独立的线圈,所绕圈数相同,绕向相反。使EMI滤波器接入电路后,两只线圈产生的磁通在磁芯中相互抵消,不会使磁芯饱和。由于干扰信号比较弱,所以磁芯一般工作在低磁场的区域,选用磁性材料要求具有较高的初始磁导率μ0的材料做共模滤波电感。但也不是初始磁导率愈高愈好,还要考虑磁性材料在电路中的电特性。为了说明,下面选择不同类型高μ0的软磁材料在同样条件下测其频率与阻抗关系曲线,反映出电感磁芯的插入损耗变化趋势,其性能如表2及图3所示。

曲线IV是外国专门用于抗共模干扰用的电感磁芯(Mn-Zn铁氧体),与国产铁氧体相比较,在低频段100Hz~10000Hz,由于材料本身电阻率高,交流等效电阻小,说明在这个频段干扰信号损耗很小,电流中主要以感抗起主要作用,可见铁氧体材料对低频干扰信号没有一点抑制作用,而超微晶和1J851材料由于材料电阻率比较低,随频率的增加损耗也增加,可以看出磁芯涡流损耗引起的等效电阻R比铁氧体大得多。在10kHz~100kHz的频段R不断增加,对该频段的干扰信号的抑制也不断增强,其中1J851和超微晶材料对干扰信号抑制衰减最大而铁氧体则很小。这对于线性滤波器来说,工作频率在50Hz~60Hz或400Hz~800Hz的电源要消除或衰减频率小于10kHz的干扰信号,最好选用金属磁性材料(或非晶超微晶)。而铁氧体在这个频段对干扰信号的吸收显然没

Yz4.gif (10531 字节)

图4不同磁粉芯的阻抗随频率变化曲线

滤波器相关文章:滤波器原理


滤波器相关文章:滤波器原理


电源滤波器相关文章:电源滤波器原理


漏电开关相关文章:漏电开关原理
数字滤波器相关文章:数字滤波器原理


评论


相关推荐

技术专区

关闭